
Springer Optimization and Its Applications 67

William E. Hart
Carl D. Laird
Jean-Paul Watson
David L. Woodruff
Gabriel A. Hackebeil
Bethany L. Nicholson
John D. Siirola

Pyomo —
Optimization
Modeling
in Python
Second Edition

Springer Optimization and Its Applications

VOLUME 67

Managing Editor
Panos M. Pardalos (University of Florida)

Editor–Combinatorial Optimization
Ding-Zhu Du (University of Texas at Dallas)

Advisory Board
J. Birge (University of Chicago)

F. Giannessi (University of Pisa)
H.D. Sherali (Virginia Polytechnic and State University)
T. Terlaky (Lehigh University)
Y. Ye (Stanford University)

Aims and Scope
Optimization has been expanding in all directions at an astonishing rate
during the last few decades. New algorithmic and theoretical techniques
have been developed, the diffusion into other disciplines has proceeded at a
rapid pace, and our knowledge of all aspects of the field has grown even more
profound. At the same time, one of the most striking trends in optimization
is the constantly increasing emphasis on the interdisciplinary nature of the
field. Optimization has been a basic tool in all areas of applied mathematics,
engineering, medicine, economics, and other sciences.

The series Springer Optimization and Its Applications publishes under-
graduate and graduate textbooks, monographs and state-of-the-art exposi-
tory work that focus on algorithms for solving optimization problems and
also study applications involving such problems. Some of the topics covered
include nonlinear optimization (convex and nonconvex), network flow
problems, stochastic optimization, optimal control, discrete optimization,
multi-objective programming, description of software packages, approxima-
tion techniques and heuristic approaches.

More information about this series at http://www.springer.com/series/7393

S. Butenko (Texas A&M University)

http://www.springer.com/series/7393

Second Edition

Pyomo — Optimization
Modeling in Python

William E. Hart • Carl D. Laird
Jean-Paul Watson • David L. Woodruff
Gabriel A. Hackebeil • Bethany L. Nicholson
John D. Siirola

ISBN 978-3-319-58819-3 ISBN 978-3-319-58821-6 (eBook)
DOI 10.1007/978-3-319-58821-6

Library of Congress Control Number: 2017940404

William E. Hart Carl D. Laird
Sandia National Laboratories Sandia National Laboratories
Albuquerque, New Mexico, USA Albuquerque, New Mexico, USA

David L. Woodruff
Graduate School of Management
University of California, Davis
Davis, California, USA

Bethany L. Nicholson
Sandia National Laboratories
Albuquerque, New Mexico, USA

Springer Optimization and its Applications
ISSN 1931-6828 ISSN 1931-6836 (electronic)

© Springer International Publishing AG 2012, 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein
or for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Jean-Paul Watson
Sandia National Laboratories

 Albuquerque, New Mexico, USA

Gabriel A. Hackebeil

John D. Siirola
Sandia National Laboratories
Albuquerque, ew Mexico, SA N U

Department of Industrial

University of Michigan
Ann Arbor, Michigan, USA

and Operations Engineering

This book is dedicated to future contributors
to the Pyomo project.

Preface

This book describes a tool for mathematical modeling: the Python Optimization
Modeling Objects (Pyomo) software. Pyomo supports the formulation and analysis
of mathematical models for complex optimization applications. This capability is
commonly associated with algebraic modeling languages (AMLs), which support
the description and analysis of mathematical models with a high-level language.
Although most AMLs are implemented in custom modeling languages, Pyomo’s
modeling objects are embedded within Python, a full-featured high-level program-
ming language that contains a rich set of supporting libraries.

Modeling is a fundamental process in many aspects of scientific research, engi-
neering and business, and the widespread availability of computing has made the
numerical analysis of mathematical models a commonplace activity. Furthermore,
AMLs have emerged as a key capability for robustly formulating large models for
complex, real-world applications [53]. AMLs streamline the process of formulating
models by simplifying the management of sparse data and supporting the natural ex-
pression of model components. Additionally, AMLs like Pyomo support scripting
with model objects, which facilitates the custom analysis of complex problems.

The core of Pyomo is an object-oriented capability for representing optimization
models. Pyomo also contains packages that define modeling extensions and model
reformulations. For example, the pyomo.pysp package defines modeling exten-
sions for stochastic programs as well as solvers that can analyze these problems.
Pyomo also includes packages that define interfaces to solvers like CPLEX and
Gurobi, as well as solver services like NEOS.

Goals of the Book

This second edition provides an updated description of Pyomo’s modeling capabil-
ities. A key goal of this book is to provide a broad description of Pyomo that will
enable the user to develop and optimize models with Pyomo. The book uses many
examples to illustrate different techniques that can be used to formulate models.

vii

viii Preface

Another goal of this book is to illustrate the breadth of Pyomo’s capabilities. Py-
omo supports the formulation and analysis of common optimization models, includ-
ing linear programs, mixed-integer linear programs, nonlinear programs, mixed-
integer nonlinear programs, mathematical programs with equilibrium constraints,
generalized disjunctive programs, bilevel programs, and stochastic programs. Addi-
tionally, Pyomo includes solver interfaces for a variety of widely used optimization
software packages, including CBC, CPLEX, GLPK, and Gurobi. Additionally, Py-
omo models can be optimized with optimizers like IPOPT that employ the AMPL
Solver Library interface.

Finally, a goal of this book is to help users get started with Pyomo even if
they have little knowledge of Python. Appendix A provides a quick introduction
to Python, but we have been impressed with how well Python reference texts sup-
port new Pyomo users. Although Pyomo introduces Python objects and a process
for applying them, the expression of models with Pyomo strongly reflects Python’s
clean, concise syntax.

However, our discussion of Pyomo’s advanced modeling capabilities assumes
some background in object-oriented design and features of the Python program-
ming language. For example, our discussion of modeling components distinguishes
between class definitions and class instances. We have not attempted to describe
these advanced features of Python in the book. Thus, a user should expect to develop
some familiarity with Python in order to effectively understand and use advanced
modeling features.

Who Should Read This Book

This book provides a reference for students, academic researchers and practitioners.
The design of Pyomo is simple enough that it has been effectively used in the class-
room with undergraduate and graduate students. However, we assume that the reader
is generally familiar with optimization and mathematical modeling. Although this
book does not contain a glossary, we recommend the Mathematical Programming
Glossary [45] as a reference for the reader.

Pyomo is also a valuable tool for academic researchers and practitioners. A key
focus of Pyomo development has been on the ability to support the formulation and
analysis of real-world applications. Consequently, issues like run-time performance
and robust solver interfaces are a priority.

Additionally, we believe that researchers will find that Pyomo provides an ef-
fective framework for developing high-level optimization and analysis tools. For
example, Pyomo provides generic solvers for stochastic programming, and it lever-
ages the fact that Pyomo’s modeling objects are embedded within a full-featured
high-level programming language. This allows for transparent parallelization of
sub-problems using Python parallel communication libraries. This ability to sup-
port generic solvers for complex models is very powerful, and we believe that it can
be used with many other optimization analysis techniques.

Preface ix

Revisions for the Second Edition

We have made several major changes while preparing the second edition of this
book. The book was divided into two parts: (1) chapters that provide an introduc-
tion to optimization and Pyomo, and (2) chapters that describe advanced features
and extensions. The introductory chapters were revised to provide a more tutorial
description. In particular, reference material was removed from the first edition,
which will be provided online at the Pyomo website. The chapters describing ad-
vanced features were extended to include new functionality added to Pyomo since
the first edition, including generalized disjunctive programming, mathematical pro-
gramming with equilibrium constraints, and bilevel programming.

Comments and Questions

This book documents the capabilities of the Pyomo 5.1 release. Most examples in
the book work with Pyomo 5.0, but some errors in Pyomo DAT file processing were
resolved in the Pyomo 5.1 release. Further information is available on the Pyomo
website:

http://www.pyomo.org

Pyomo’s open source software is hosted at GitHub:
https://github.com/Pyomo/pyomo

We encourage feedback from readers, either through direct communication with
the authors or with the Pyomo Forum:

pyomo-forum@googlegroups.com

We hope this will include feedback on the presentation of this material, including
typos and errors in our examples. Note that all of the examples used in this book are
included with Pyomo in the pyomo/examples/doc/pyomobook directory!

Good Luck!

Albuquerque, New Mexico, USA William Hart
Albuquerque, New Mexico, USA Carl Laird
Albuquerque, New Mexico, USA Jean-Paul Watson
Davis, California, USA David Woodruff
Ann Arbor, Michigan, USA Gabe Hackebeil
Albuquerque, New Mexico, USA Bethany Nicholson
Albuquerque, New Mexico, USA John Siirola

7 April, 2017

http://www.pyomo.org
https://github.com/Pyomo/pyomo
mailto:pyomo-forum@googlegroups.com

Acknowledgments

xi

We are grateful for the efforts of many people who have supported both editions
of this book. We thank Elizabeth Loew at Springer for helping shepherd this book
from an initial concept to final production; her enthusiasm for publishing is con-
tagious. Also, we thank Madelynne Farber at Sandia National Laboratories for her
guidance with the legal process for releasing open source software and book pub-
lishing. Finally, we thank Doug Prout for developing the Pyomo, PySP and Coopr
logos.

We are indebted to our reviewers for the time and effort they put into helping
this book be successful. Without them, this book would contain many typos and
software bugs. So, thanks to Jack Ingalls, Zev Friedman, Harvey Greenberg, Sean
Legg, Angelica Wong, Daniel Word, Deanna Garcia, and Ellis Ozakyol. Special
thanks to Amber Gray-Fenner.

We are particularly grateful to the growing community of Pyomo users. Your
interest and enthusiasm for Pyomo was the most important factor in our decision
to write this book. We thank the early adopters of Pyomo who have provided
detailed feedback on the design and utility of the software, including Fernando
Badilla, Steven Chen, Ned Dmitrov, YueYue Fan, Eric Haung, Allen Holder, An-
dres Iroume, Darryl Melander, Carol Meyers, Pierre Nancel-Penard, Mehul Rang-
wala, Eva Worminghaus and David Alderson. Your feedback continues to have a
major impact on the design and capabilities of Pyomo.

We also thank our friends in the COIN-OR project for supporting the Pyomo
software. Although the main development site for Pyomo is hosted at GitHub, our
partnership with COIN-OR is a key part of our strategy to ensure that Pyomo re-
mains a viable open source software project.

A special thanks goes to our collaborators who have contributed to packages in
Pyomo: Francisco Muñoz, Timothy Ekl, Kevin Hunter, Patrick Steele, and Daniel
Word. We also thank Tom Brounstein, Dave Gay, and Nick Benevidas for helping
develop Python modules and documentation for Pyomo.

The authors gratefully acknowledge this support that contributed to the devel-
opment of this book: National Science Foundation under Grant CBET#0941313
and CBET#0955205, and the Office of Advanced Scientific Computing Research

xii Acknowledgments

within the DOE Office of Science, the U.S. Department of Energy ARPA-E under
the Green Electricity Network Integration program, and the Institute for the Design
of Advanced Energy Systems (IDAES) with funding from the Office of Fossil En-
ergy, Cross-Cutting Research, U.S. Department of Energy. This book was supported
in part by Sandia National Laboratories. Sandia National Laboratories is a multi-
mission laboratory managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

And finally, we would like to thank our families and friends for putting up with
our passion for optimization software.

Contents

1 Introduction 1

1.1 Modeling Languages for Optimization 1
1.2 Modeling with Pyomo . 3

1.2.1 Simple Examples . 3
1.2.2 Graph Coloring Example 5
1.2.3 Key Pyomo Features . 6

1.3 Getting Started . 9
1.4 Book Summary . 10
1.5 Discussion . 11

Part I An Introduction to Pyomo 13

2 Mathematical Modeling and Optimization 15

2.1 Mathematical Modeling . 15
2.1.1 Overview . 15
2.1.2 A Modeling Example . 16

2.2 Optimization . 18
2.3 Linear and Nonlinear Optimization Models 20

2.3.1 Definition . 20
2.3.2 A Linear Approximation 20

2.4 Modeling with Pyomo . 22
2.4.1 An Abstract Formulation 22
2.4.2 A Concrete Formulation 23
2.4.3 Linear Version . 24

2.5 Solving the Pyomo Model . 26
2.5.1 Solvers . 26
2.5.2 The pyomo Command 26
2.5.3 Python Scripts . 27

3 Pyomo Overview 29

3.1 Introduction . 29
3.2 The Warehouse Location Problem 30
3.3 Pyomo Models . 31

3.3.1 Components for Variables, Objectives and Constraints . . 31

xiii

xiv Contents

3.3.2 Indexed Components . 32
3.3.3 Construction Rules . 34
3.3.4 Abstract and Concrete Models 35
3.3.5 A Concrete Model for the Warehouse Location Problem . 37
3.3.6 Modeling Components for Sets and Parameters 40
3.3.7 An Abstract Model for the Warehouse Location Problem . 41

3.4 Solving the Pyomo Model . 43
3.4.1 Using the pyomo Command 43
3.4.2 Scripting the Solution Process 44

4 Pyomo Models and Components: An Introduction 47

4.1 An Object-Oriented AML . 47
4.2 Common Component Paradigms 48

4.2.1 Indexed Components . 49
4.3 Variables . 50

4.3.1 Var Declarations . 50
4.3.2 Working with Var Objects 53

4.4 Objectives . 53
4.4.1 Objective Declarations 54
4.4.2 Working with Objective Objects 55

4.5 Constraints . 55
4.5.1 Constraint Declarations 56
4.5.2 Working with Constraint Objects 58

4.6 Set Data . 59
4.6.1 Set Declarations . 59
4.6.2 Working with Set Objects 63

4.7 Parameter Data . 64
4.7.1 Param Declarations . 65
4.7.2 Working with Param Objects 68

4.8 Named Expressions . 69
4.8.1 Expression Declarations 69
4.8.2 Working with Expression Objects 70

4.9 Suffix Components . 71
4.9.1 Suffix Declarations 71
4.9.2 Working with Suffixes 73

4.10 Build Components . 74
4.11 Other Modeling Components . 76

5 The Pyomo Command 79

5.1 Overview . 79
5.2 The check Subcommand . 80
5.3 The convert Subcommand . 81
5.4 The help Subcommand . 82
5.5 The solve Subcommand . 83

5.5.1 Specifying the Model Object 84

Contents xv

5.5.2 Selecting Data with Namespaces 86
5.5.3 Customizing Pyomo’s Workflow 89
5.5.4 Customizing Solver Behavior 93
5.5.5 Analyze Solver Results 94
5.5.6 Managing Diagnostic Output 94

5.6 Discussion . 96

6 Data Command Files 97

6.1 Model Data . 97
6.2 The set Command . 98

6.2.1 Simple Sets . 98
6.2.2 Sets of Tuple Data . 99
6.2.3 Set Arrays . 100

6.3 The param Command . 101
6.3.1 One-dimensional Parameter Data 101
6.3.2 Multi-Dimensional Parameter Data 103

6.4 The table Command . 105
6.5 The load Command . 108

6.5.1 Simple Load Examples 109
6.5.2 Load Syntax Options . 110
6.5.3 Interpreting Tabular Data 112
6.5.4 Loading from Spreadsheets and Relational Databases . . . 114

6.6 The include Command . 117
6.7 Data Namespaces . 117
6.8 Discussion . 118

Part II Advanced Features and Extensions 119

7 Nonlinear Programming with Pyomo 121

7.1 Introduction . 121
7.2 Building Nonlinear Programming Formulations 122

7.2.1 Nonlinear Expressions 122
7.2.2 The Rosenbrock Problem 123

7.3 Solving Nonlinear Programming Formulations 126
7.3.1 Nonlinear Solvers . 126
7.3.2 Additional Tips for Nonlinear Programming 127

7.4 Nonlinear Programming Examples 128
7.4.1 Variable Initialization for a Multimodal Function 129
7.4.2 Optimal Quotas for Sustainable Harvesting of Deer 130
7.4.3 Estimation of Infectious Disease Models 135
7.4.4 Reactor Design . 138

8 Structured Modeling with Blocks 145

8.1 Introduction . 145
8.2 Block structures . 147

xvi Contents

8.3 Blocks as Indexed Components . 148
8.4 Construction Rules within Blocks 149
8.5 Extracting values from hierarchical models 150
8.6 Blocks Example: Optimal Multi-Period Lot-Sizing 150

8.6.1 A Formulation Without Blocks 152
8.6.2 A Formulation With Blocks 153

9 Generalized Disjunctive Programming 157

9.1 Introduction . 157
9.2 Modeling GDP in Pyomo . 159
9.3 Solving GDP models . 161

9.3.1 Big-M transformation 162
9.3.2 Convex hull transformation 162

9.4 A mixing problem with semi-continuous variables 163

10 Stochastic Programming Extensions 165

10.1 Introduction . 165
10.2 Stochastic Programming: Definition and Notation 166
10.3 Modeling in PySP . 167

10.3.1 The Deterministic Reference Model 168
10.3.2 The Scenario Tree . 171
10.3.3 Scenario Parameter Specification 174

10.4 Generating and Solving the Extensive Form 176
10.5 Progressive Hedging: A Generic Decomposition Strategy 180

10.5.1 The runph Script . 182
10.6 Progressive Hedging Extensions: Advanced Configuration 187

10.6.1 Bundling . 187
10.6.2 Watson and Woodruff Extensions 188
10.6.3 Solving a Constrained Extensive Form 194
10.6.4 Alternative Convergence Criteria 195
10.6.5 User-Defined Extensions 196

10.7 Solving PH Scenario Sub-Problems in Parallel 197
10.8 Bounds . 198

11 Differential Algebraic Equations 201

11.1 Introduction . 201
11.2 Pyomo DAE Modeling Components 202
11.3 Solving Pyomo Models with DAEs 204

11.3.1 Finite Difference Transformation 205
11.3.2 Collocation Transformation 206

11.4 Additional Features . 207
11.4.1 Applying Multiple Discretizations 207
11.4.2 Restricting Control Input Profiles 208
11.4.3 Plotting . 208

12 Mathematical Programs with Equilibrium Constraints 211

Contents xvii

12.1 Introduction . 211
12.2 Modeling Equilibrium Conditions 212

12.2.1 Complementarity Conditions 212
12.2.2 Complementarity Expressions 212
12.2.3 Modeling Mixed-Complementarity Conditions 213

12.3 MPEC Transformations . 216
12.3.1 Standard Form . 217
12.3.2 Simple Nonlinear . 217
12.3.3 Simple Disjunction . 218
12.3.4 AMPL Solver Interface 219

12.4 Solver Interfaces and Meta-Solvers 219
12.4.1 Nonlinear Reformulations 220
12.4.2 Disjunctive Reformulations 220
12.4.3 PATH and the ASL Solver Interface 221

12.5 Discussion . 222

13 Bilevel Programming 223

13.1 Introduction . 223
13.2 Motivating Problems . 224

13.2.1 Linear Bilevel Programs with Continuous Variables 225
13.2.2 Quadratic Min/Max . 225

13.3 Modeling Bilevel Programs . 225
13.4 Solving Linear Bilevel Programs 227

13.4.1 Global Optimization . 228
13.4.2 Local Optimization . 229

13.5 Solving Quadratic Min-Max Bilevel Programs 229
13.6 Discussion . 232

14 Scripting 235

14.1 Introduction . 235
14.2 A Basic Optimization Script . 236
14.3 Creating and Modifying Pyomo Models 237

14.3.1 Modifying Model Parameters 239
14.3.2 Modifying Model Structure 240

14.4 Using Solvers . 242
14.5 Investigating the Solution . 243

14.5.1 Solver Results . 244
14.5.2 Retrieving Variable Values 245

14.6 Scripting Examples . 246
14.6.1 Warehouse Location Loop and Plotting 246
14.6.2 A Sudoku Solver . 247

A A Brief Python Tutorial 255

A.1 Overview . 255
A.2 Installing and Running Python . 256

xviii Contents

A.3 Python Line Format . 257
A.4 Variables and Data Types . 258
A.5 Data Structures . 260

A.5.1 Strings . 260
A.5.2 Lists . 260
A.5.3 Tuples . 261
A.5.4 Sets . 261
A.5.5 Dictionaries . 262

A.6 Conditionals . 262
A.7 Iterations and Looping . 263
A.8 Functions . 264
A.9 Objects and Classes . 265
A.10 Modules . 266
A.11 Python Resources . 266

Bibliography 267

Index 273

Chapter 1

Introduction

Abstract This chapter introduces and motivates Pyomo, a Python-based tool for
modeling and solving optimization problems. Modeling is a fundamental process in
many aspects of scientific research, engineering, and business. Algebraic modeling
languages like Pyomo are high-level languages for specifying and solving math-
ematical optimization problems. Pyomo is a flexible, extensible modeling frame-
work that captures and extends central ideas found in modern algebraic modeling
languages, all within the context of a widely used programming language.

1.1 Modeling Languages for Optimization

This book describes a tool for mathematical modeling: the Python Optimization
Modeling Objects (Pyomo) software package. Pyomo supports the formulation and
analysis of mathematical models for complex optimization applications. This ca-
pability is commonly associated with commercial algebraic modeling languages
(AMLs) such as AIMMS [1], AMPL [2], and GAMS [31]. Pyomo implements a
rich set of modeling and analysis capabilities, and it provides access to these ca-
pabilities within Python, a full-featured, high-level programming language with a
large set of supporting libraries.

Optimization models define the goals or objectives for a system under consid-
eration. Optimization models can be used to explore trade-offs between goals and
objectives, identify extreme states and worst-case scenarios, and identify key factors
that influence phenomena in a system. Consequently, optimization models are used
to analyze a wide range of scientific, business, and engineering applications.

The widespread availability of computing resources has made the numerical anal-
ysis of optimization models commonplace. The computational analysis of an opti-
mization model requires the specification of a model that is communicated to a
solver software package. Without a language to specify optimization models, the
process of writing input files, executing a solver, and extracting results from a solver
is tedious and error-prone. This difficulty is compounded in complex, large-scale,

1© Springer International Publishing AG 2017
W.E. Hart et al., Pyomo — Optimization Modeling in Python, Springer Optimization
and Its Applications 67, DOI 10.1007/978-3-319-58821-6_1

2 1 Introduction

real-world applications that are difficult to debug when errors occur. Additionally,
solvers use many different input formats, but few of them are considered to be stan-
dards. Thus, the application of multiple solvers to analyze a single optimization
model introduces additional complexities. Furthermore, model verification (i.e., en-
suring that the model communicated to the solver accurately reflects the model the
developer intended to express) is extremely difficult without high-level languages
for expressing models.

AMLs are high-level languages for describing and solving optimization prob-
lems [36, 53]. AMLs minimize the difficulties associated with analyzing optimiza-
tion models by enabling high-level specification of optimization problems. Further-
more, AML software provides rigorous interfaces to external solver packages that
are used to analyze problems, and it allows the user to interact with solver results in
the context of their high-level model specification.

Custom AMLs like AIMMS [1], AMPL [2, 29], and GAMS [31] implement op-
timization model specification languages with an intuitive and concise syntax for
defining variables, constraints, and objectives. Further, these AMLs support speci-
fication of abstract concepts such as sparse sets, indices, and algebraic expressions,
which are essential when specifying large-scale, real-world problems with thou-
sands or millions of constraints and variables. These AMLs can represent a wide
variety of optimization models, and they interface with a rich set of solver pack-
ages.

AMLs are increasingly being extended to include custom scripting capabilities,
which enables expression of high-level analysis algorithms concurrently with opti-
mization model specifications. Similarly, standard programming languages like Java
and C++ have been extended to include AML constructs. For example, modeling li-
braries like FlopC++ [27] and OptimJ [67] support the specification of optimization
models using an object-oriented design in C++ and Java, respectively. Although
these modeling libraries sacrifice some of the intuitive mathematical syntax of a
custom AML, they allow the user to leverage the flexibility of modern high-level
programming languages. A further advantage of these AML libraries is that they
can link directly to high-performance optimization libraries and solvers, which can
be an important consideration in some applications.

A complementary strategy is to use an AML that extends a standard high-level
programming language (as opposed to being based a proprietary language) to for-
mulate optimization models that are analyzed with solvers written in low-level lan-
guages. This two-language approach leverages the flexibility of the high-level lan-
guage for formulating optimization problems and the efficiency of the low-level
language for numerical computations. This is an increasingly common approach
for scientific computing software. The Matlab TOMLAB Optimization Environ-
ment [83] is among the most mature optimization software package using this ap-
proach; Pyomo strongly leverages this approach as well.

1.2 Modeling with Pyomo 3

1.2 Modeling with Pyomo

The goal of Pyomo is to provide a platform for specifying optimization models
that embodies central ideas found in modern AMLs, within a framework that pro-
motes flexibility, extensibility, portability, openness, and maintainability. Pyomo is
an AML that extends Python to include objects for optimization modeling [42].
These objects can be used to specify optimization models and translate them into
various formats that can be processed by external solvers.

We now provide some motivating examples to illustrate the use of Pyomo in
specifying optimization models.

1.2.1 Simple Examples

Consider the following linear program (LP):

min x1 +2x2
s.t. 3x1 +4x2 ≥ 1

2x1 +5x2 ≥ 2
x1,x2 ≥ 0

This LP can be easily expressed in Pyomo as follows:
from pyomo.environ import *

model = ConcreteModel()
model.x_1 = Var(within=NonNegativeReals)
model.x_2 = Var(within=NonNegativeReals)
model.obj = Objective(expr=model.x_1 + 2*model.x_2)
model.con1 = Constraint(expr=3*model.x_1 + 4*model.x_2 >= 1)
model.con2 = Constraint(expr=2*model.x_1 + 5*model.x_2 >= 2)

The first line is a standard Python import statement that initializes the Pyomo envi-
ronment and loads Pyomo’s core modeling component library. The next lines con-
struct a model object and define model attributes. This example describes a concrete
model. Model components are objects that are attributes of a model object, and the
ConcreteModel object initializes each model component as they are added. The
model decision variables, constraints, and objective are defined using Pyomo model
components.

Users rarely have a single instance of a particular optimization problem to solve.
Rather, they commonly have a general optimization model and then create a particu-
lar instance of that model using specific data. For example, the following equations
represent an LP with scalar parameters n and m, vector parameters b and c, and
matrix parameter a:

min ∑n
i=1 cixi

s.t. ∑n
i=1 a jixi ≥ b j ∀ j = 1 . . .m

xi ≥ 0 ∀i = 1 . . .n

4 1 Introduction

This LP can be expressed with a concrete model in Pyomo as follows:
from pyomo.environ import *
import mydata

model = ConcreteModel()

model.x = Var(mydata.N, within=NonNegativeReals)

def obj_rule(model):
return sum(mydata.c[i]*model.x[i] for i in mydata.N)

model.obj = Objective(rule=obj_rule)

def con_rule(model, m):
return sum(mydata.a[m,i]*model.x[i] for i in mydata.N) \

>= mydata.b[m]
model.con = Constraint(mydata.M, rule=con_rule)

This script requires that the data used to construct the model is available while each
modeling component is constructed. In this example, the necessary data exists in
mydata.py:

N = [1,2]
M = [1,2]
c = {1:1, 2:2}
a = {(1,1):3, (1,2):4, (2,1):2, (2,2):5}
b = {1:1, 2:2}

This LP can also be viewed as an abstract mathematical model, where unspeci-
fied, symbolic parameter values are later defined when the model is initialized. For
example, this LP can be expressed as an abstract model in Pyomo as follows:

from pyomo.environ import *

model = AbstractModel()

model.N = Set()
model.M = Set()
model.c = Param(model.N)
model.a = Param(model.M, model.N)
model.b = Param(model.M)

model.x = Var(model.N, within=NonNegativeReals)

def obj_rule(model):
return sum(model.c[i]*model.x[i] for i in model.N)

model.obj = Objective(rule=obj_rule)

def con_rule(model, m):
return sum(model.a[m,i]*model.x[i] for i in model.N) \

>= model.b[m]
model.con = Constraint(model.M, rule=con_rule)

This example includes model components that provide abstract or symbolic defi-
nitions of set and parameter values. The AbstractModel object defers initial-

1.2 Modeling with Pyomo 5

ization of model components until a model instance is created, using user-supplied
set and parameter data. Both concrete and abstract models can be initialized with
data from a variety of different data sources, including data command files that are
adapted from AMPL’s data commands. For example:

param : N : c :=
1 1
2 2 ;

param : M : b :=
1 1
2 2 ;

param a :=
1 1 3
1 2 4
2 1 2
2 2 5 ;

1.2.2 Graph Coloring Example

We further illustrate Pyomo’s modeling capabilities with a simple, well-known op-
timization problem: minimum graph coloring (also known as vertex coloring). The
graph coloring problem concerns the assignment of colors to vertices of a graph
such that no two adjacent vertices share the same color. Graph coloring has many
practical applications, including register allocation in compilers, resource schedul-
ing, and pattern matching, and it appears as a kernel in recreational puzzles like
Sudoku.

Let G = (V,E) denote a graph with vertex set V and edge set E ⊆V ×V . Given
G, the objective in the minimum graph coloring problem is to find a valid coloring
that uses the minimum number of distinct colors. For simplicity, we assume that
the edges in E are ordered such that if (v1,v2) ∈ E then v1 < v2. Let k denote the
maximum number of colors, and define the set of possible colors C = {1, . . . ,k}.

We can represent the minimum graph coloring problem as the following integer
program (IP):

min y
s.t. ∑c∈C xv,c = 1 ∀v ∈V

xv1,c + xv2,c ≤ 1 ∀(v1,v2) ∈ E
y ≥ c · xv,c ∀v ∈V,c ∈C
xv,c ∈ {0,1} ∀v ∈V,c ∈C

(1.1)

In this formulation, the variable xv,c equals one if vertex v is colored with color c
and zero otherwise; y denotes the number of colors that are used. The first constraint
requires that each vertex is colored with exactly one color. The second constraint
requires that vertices that are connected by an edge must have different colors. The
third constraint defines a lower bound on y that guarantees that y will be no less than

6 1 Introduction

the number of colors used in a solution. The fourth and final constraint enforces the
binary constraint on xv,c.

Figure 1.1 shows a Pyomo specification of the above graph coloring formulation,
using a concrete model; the example is adapted from Gross and Yellen [37]. This
specification consists of Python commands that define a ConcreteModel object,
and then define various attributes of this object, including variables, constraints, and
the optimization objective. Lines 10–24 define the model data. Line 28 is a standard
Python import statement that adds all of the symbols (e.g., classes and functions)
defined in pyomo.environ to the current Python namespace. Line 31 specifies
creation of the model object, which is an instance of the ConcreteModel class.
Lines 34 and 35 define the model decision variables. Note that y is a scalar variable,
while x is a two-dimensional array of variables. The remaining lines in the example
define the model constraints and objective. The Objective class defines a single
optimization objective using the expr keyword option. The ConstraintList
class defines a list of constraints, which are individually added.

When compared to custom AMLs, Pyomo models are clearly more verbose (e.g.,
see Hart et al. [42]). However, this example illustrates how Python’s clean syntax
still allows Pyomo to express mathematical concepts intuitively and concisely. Aside
from the use of Pyomo classes, this example employs standard Python syntax and
methods. For example, line 41 uses Python’s generator syntax to iterate over all ele-
ments of the colors set and apply the Python sum function to the result. Although
Pyomo does include some utility functions to simplify the construction of expres-
sions, Pyomo does not rely on sophisticated extensions of core Python functionality.

1.2.3 Key Pyomo Features

Python

Python’s clean syntax enables Pyomo to express mathematical concepts in an intu-
itive and concise manner. Furthermore, Python’s expressive programming environ-
ment can be used to formulate complex models and to define high-level solvers that
customize the execution of high-performance optimization libraries. Python pro-
vides extensive scripting capabilities, allowing users to analyze Pyomo models and
solutions, leveraging Python’s rich set of third-party libraries (e.g., numpy, scipy,
and matplotlib). Finally, the embedding of Pyomo in Python allows users to learn
core syntax through Python’s rich documentation.

Customizable Capability

Pyomo is designed to support a “stone soup” development model in which each
developer “scratches their own itch.” A key element of this design is the plug-in
framework that Pyomo uses to integrate model components, model transformations,

1 #
2 # Graph c o l o r i n g example a d a p t e d from
3 #
4 # J o n a t h a n L . Gross and Jay Yel len ,
5 # ” Graph Theory and I t s A p p l i c a t i o n s , 2nd E d i t i o n ” ,
6 # Chapman & H a l l /CRC, Boca Raon , FL , 20 06 .
7 #
8
9 # D ef in e d a t a f o r t h e g raph of i n t e r e s t .

10 v e r t i c e s = s e t ([’ Ar ’ , ’Bo ’ , ’ Br ’ , ’Ch ’ , ’Co ’ , ’Ec ’ ,
11 ’FG’ , ’Gu ’ , ’ Pa ’ , ’ Pe ’ , ’Su ’ , ’Ur ’ , ’Ve ’])
12
13 edges = s e t ([(’ FG’ , ’ Su ’) , (’FG’ , ’ Br ’) , (’ Su ’ , ’ Gu ’) ,
14 (’ Su ’ , ’ Br ’) , (’ Gu ’ , ’ Ve ’) , (’ Gu ’ , ’ Br ’) ,
15 (’ Ve ’ , ’ Co ’) , (’ Ve ’ , ’ Br ’) , (’ Co ’ , ’ Ec ’) ,
16 (’ Co ’ , ’ Pe ’) , (’ Co ’ , ’ Br ’) , (’ Ec ’ , ’ Pe ’) ,
17 (’ Pe ’ , ’ Ch ’) , (’ Pe ’ , ’ Bo ’) , (’ Pe ’ , ’ Br ’) ,
18 (’ Ch ’ , ’ Ar ’) , (’ Ch ’ , ’ Bo ’) , (’ Ar ’ , ’ Ur ’) ,
19 (’ Ar ’ , ’ Br ’) , (’ Ar ’ , ’ Pa ’) , (’ Ar ’ , ’ Bo ’) ,
20 (’ Ur ’ , ’ Br ’) , (’ Bo ’ , ’ Pa ’) , (’ Bo ’ , ’ Br ’) ,
21 (’ Pa ’ , ’ Br ’)])
22
23 n c o l o r s = 4
24 c o l o r s = r a n g e (1 , n c o l o r s +1)
25
26
27 # Python i m p o r t s t a t e m e n t
28 from pyomo . e n v i r o n i m p o r t ∗
29
30 # C r e a t e a Pyomo model o b j e c t
31 model = Concre teModel ()
32
33 # D ef in e model v a r i a b l e s
34 model . x = Var (v e r t i c e s , c o l o r s , w i t h i n = B in a ry)
35 model . y = Var ()
36
37 # Each node i s c o l o r e d w i th one c o l o r
38 model . n o d e c o l o r i n g = C o n s t r a i n t L i s t ()
39 f o r v i n v e r t i c e s :
40 model . n o d e c o l o r i n g . add (
41 sum (model . x [v , c] f o r c i n c o l o r s) == 1)
42
43 # Nodes t h a t s h a r e an edge c a n n o t be c o l o r e d t h e same
44 model . e d g e c o l o r i n g = C o n s t r a i n t L i s t ()
45 f o r v ,w i n edges :
46 f o r c i n c o l o r s :
47 model . e d g e c o l o r i n g . add (
48 model . x [v , c] + model . x [w, c] <= 1)
49
50 # P r o v i d e a lower bound on t h e minimum number o f c o l o r s
51 # t h a t a r e needed
52 model . m i n c o l o r i n g = C o n s t r a i n t L i s t ()
53 f o r v i n v e r t i c e s :
54 f o r c i n c o l o r s :
55 model . m i n c o l o r i n g . add (
56 model . y >= c ∗ model . x [v , c])
57
58 # Minimize t h e number o f c o l o r s t h a t a r e needed
59 model . o b j = O b j e c t i v e (exp r =model . y)

1.2 Modeling with Pyomo 7

Fig. 1.1: A concrete Pyomo model for the minimum graph coloring problem.

8 1 Introduction

solvers, and solver managers. A plug-in framework manages the registration of these
capabilities. Thus, users can customize Pyomo in a modular manner without the risk
of destabilizing core functionality.

Command-Line Tools and Scripting

Pyomo models can be analyzed both using command-line tools and via Python
scripts. The pyomo command line utility provides a generic interface to most Py-
omo modeling capabilities. An exception is the stochastic programming capabilities
available in pyomo.pysp. The pyomo command supports a generic optimization
process. This process can easily be replicated in a Python script and further cus-
tomized for a user’s specific needs.

Concrete and Abstract Model Definitions

The examples in Section 1.2.1 illustrate Pyomo’s support for both concrete and ab-
stract model definitions. The difference between these modeling approaches relates
to when modeling components are initialized: concrete models immediately initial-
ize components, and abstract models delay the initialization of components until
a later model initialization action. Consequently, these modeling approaches are
equivalent, and the choice of approach depends on the context in which Pyomo is
used and user preference. Both types of models can be easily initialized with Py-
omo’s DataPortal class, which can load data from a wide range of data sources
(e.g., csv, json, yaml, excel, and databases).

Object-Oriented Design

Pyomo employs an object-oriented library design. Models are Python objects, and
model components are attributes of these models. This design allows Pyomo to au-
tomatically manage the naming of modeling components, and it naturally segregates
modeling components within different model objects. Pyomo models can be further
structured with blocks, which support a hierarchical nesting of model components.
Many of Pyomo’s advanced modeling features leverage this structured modeling
capability.

Expressive Modeling Capability

Pyomo’s modeling components can be used to express a wide range of optimization
problems, including but not limited to:

• linear programs,
• quadratic programs,

1.3 Getting Started 9

• nonlinear programs,
• mixed-integer linear programs,
• mixed-integer quadratic programs,
• generalized disjunctive programs,
• mixed-integer stochastic programs,
• dynamic problems with differential algebraic equations,
• mathematical programs with equilibrium constraints, and
• bilevel programs.

Solver Integration

Pyomo supports both tightly and loosely coupled solver interfaces. Tightly cou-
pled modeling tools directly access optimization solver libraries (e.g., via static
or dynamic linking), and loosely coupled modeling tools apply external optimiza-
tion executables (e.g., through the use of system calls). Many optimization solvers
read problems from well-known data formats (e.g., the AMPL nl format [34]);
these solvers are loosely coupled with Pyomo. Solvers with Python interfaces (e.g.,
Gurobi and CPLEX) can be tightly coupled, which avoids writing external files.

Open Source

Pyomo is managed as an open source project to facilitate transparency in soft-
ware design and implementation. Pyomo is licensed under the BSD license [12],
which has few restrictions on government or commercial use. Pyomo is managed at
GitHub [73], and through the COIN-OR project [14]. Developer and user mailing
lists are managed on Google Groups. There is growing evidence that the reliability
of open source software is similar to closed source software [3, 89], and Pyomo is
carefully managed to ensure the robustness and reliability for users.

1.3 Getting Started

The examples in this book assume that the following software is installed:

• Python 2.6, 2.7, 3.4, and 3.5. Pyomo currently relies on CPython; there is only
experimental support for Jython and PyPy for a subset of Pyomo’s capability.

• Pyomo 5.1, which is used throughout this book.
• The PyYAML package, which is used to generate human readable display of

solver results in the YAML format. Note that this package is not strictly neces-
sary when using Pyomo; the default output format for solver results is JSON.

• The GLPK [35] solver, which is used to generate output for most examples in
this book. Other LP and MILP solvers can be used for these examples, but the
GLPK software is easily installed and widely available.

10 1 Introduction

• The IPOPT [48] solver, which is used to generate output for nonlinear model
examples. Other nonlinear optimizers can be easily used for these examples if
they are compiled with the AMPL Solver Library [33].

• The CPLEX [16] solver, which is used to generate output for stochastic pro-
gramming examples. This commercial solver provides capabilities needed for
these examples that are not commonly available in open source optimization
solvers (e.g., optimization of quadratic integer programs).

• The matplotlib Python package, which is used to generate plots.

Installation instructions for Pyomo are provided at the Pyomo website:
www.pyomo.org. Appendix A provides a brief tutorial of the Python scripting
language; various on-line sources provide more comprehensive tutorials and docu-
mentation.

NOTE: Most examples in the book work with Pyomo 5.0, but some errors in
Pyomo DAT file processing were resolved in the Pyomo 5.1 release.

1.4 Book Summary

The remainder of this book is divided into two parts. The first part provides an intro-
duction to Pyomo. Chapter 2 provides a primer on optimization and mathematical
modeling, including brief illustrations of how Pyomo can be used to specify and
solve algebraic optimization models. Chapter 3 illustrates Pyomo’s modeling capa-
bilities with simple concrete and abstract models, and Chapter 4 describes Pyomo’s
core modeling components. Chapter 5 describes Pyomo’s command-line interface.
Finally, Chapter 6 describes the syntax of Pyomo data command files.

The second part of this book documents advanced features and extensions. Chap-
ter 7 describes the nonlinear programming capabilities of Pyomo, and Chapter 8
describes how hierarchical models can be expressed in Pyomo. The next chapters
describe modeling extensions: generalized disjunctive programming (Chapter 9),
stochastic programming (Chapter 10), dynamic models expressed with differential
and algebraic equations (Chapter 11), programs with equilibrium constraints (Chap-
ter 12), and bilevel programming (Chapter 13). Finally, Chapter 14 illustrates the use
of Python scripts to customize the optimization process.

NOTE: This book does not provide a complete reference for Pyomo. Instead,
our goal is to discuss all of Pyomo’s stable core functionality that is available
in the Pyomo 5.1 release.

http://www.pyomo.org

1.5 Discussion 11

1.5 Discussion

In recent years, a variety of developers have realized that Python’s clean syntax and
rich set of supporting libraries make it an excellent choice for optimization model-
ing [42]. A variety of open source software packages provide optimization modeling
capabilities in Python, such as PuLP [69], APLEpy [4], and OpenOpt [66]. Ad-
ditionally, there are many Python-based solver interface packages, including open
source packages such as PyGlpk [70] and pyipopt [71], in addition to Python inter-
faces for the commercial solvers CPLEX [16] and Gurobi [39].

Several features distinguish Pyomo from these other Python-based optimization
modeling tools. First, Pyomo provides mechanisms for extending the core model-
ing and optimization functionality without requiring edits to Pyomo itself. Second,
Pyomo supports the definition of both concrete and abstract models. This allows the
user significant flexibility in determining how closely data is integrated with a model
definition. Finally, Pyomo can support a broad class of optimization models, includ-
ing both standard linear programs as well as general nonlinear optimization models,
stochastic programs, bilevel programs, generalized disjunctive programs, problems
constrained by differential equations, and mathematical programs with equilibrium
conditions.

Part I

An Introduction to Pyomo

Chapter 2

Mathematical Modeling and Optimization

Abstract This chapter provides a primer on optimization and mathematical model-
ing. It does not provide a complete description of these topics. Instead, this chapter
provides enough background information to support reading the rest of the book. For
more discussion of optimization modeling techniques see, for example, Williams
[86]. Implementations of simple examples of models are shown to provide the reader
with a quick start to using Pyomo.

2.1 Mathematical Modeling

2.1.1 Overview

Modeling is a fundamental process in many aspects of scientific research, engineer-
ing, and business. Modeling involves the formulation of a simplified representation
of a system or real-world object. These simplifications allow structured represen-
tation of knowledge about the original system that facilitates the analysis of the
resulting model. Schichl [78] notes that models are used to

• Explain phenomena that arise in a system;
• Make predictions about future states of a system;
• Assess key factors that influence phenomena in a system;
• Identify extreme states in a system that might represent worst-case scenarios

or minimal cost plans; and
• Analyze trade-offs to support human decision makers.

Additionally, the structured aspect of a model’s representation facilitates commu-
nication of the knowledge associated with a model. For example, a key aspect of a
model is its level of detail, which reflects the system knowledge that is needed to
employ the model in an application.

Mathematics has always played a fundamental role in representing and formulat-
ing our knowledge. Mathematical modeling has become increasingly formal as new

15© Springer International Publishing AG 2017
W.E. Hart et al., Pyomo — Optimization Modeling in Python, Springer Optimization
and Its Applications 67, DOI 10.1007/978-3-319-58821-6_2

16 2 Mathematical Modeling and Optimization

frameworks have emerged to express complex systems. The following mathematical
concepts are central to modern modeling activities:

• Variables: These represent unknown or changing parts of a model (e.g., which
decisions to take, or the characteristic of a system outcome).

• Parameters: These are symbolic representations for real-world data, which
might vary for different problem instances or scenarios.

• Relations: These are equations, inequalities, or other mathematical relation-
ships that define how different parts of a model are related to each other.

Optimization models are mathematical models that include functions that represent
goals or objectives for the system being modeled. Optimization models can be an-
alyzed to explore system trade-offs in order to find solutions that optimize system
objectives. Consequently, these models can be used for a wide range of scientific,
business, and engineering applications.

2.1.2 A Modeling Example

A Model, in the sense that we will use the word, represents items by abstracting
away some features. Everyone is familiar with physical models, such as model rail-
roads or model cars. Our interest is in mathematical models that use symbols to
represent aspects of a system or real-world object.

For example, a person might want to determine the best number of scoops of ice
cream to buy. We could use the symbol x to represent the number of scoops. We
might use c to represent the cost per scoop. So then we could model the total cost as
c times x, which we usually write as cx.

We might need a more sophisticated model of total cost if there are volume dis-
counts or surcharges for buying fractional scoops. Also, this model is probably not
valid for negative values of x. It is seldom possible to sell back ice cream for the
same price paid for it.

It is more complicated to provide a mathematical model of the happiness associ-
ated with scoops of ice cream on an ice cream cone. One approach is to use a scaled
measure of happiness. We will do that using the basic unit of the happiness asso-
ciated with one scoop of ice cream, which we call h. A simple model, then, would
be to say that the total happiness from x scoops of ice cream is h times x, which we
write as hx. For some people, that might be a pretty good approximation for values
of x between one-half and three, but there is almost no one who is 100 times as
happy to have 100 scoops of ice cream on their ice cream cone as they are to have
one scoop. For some people, the model of happiness for values of x between zero
and ten might be something like

h · (x− (x/5)2) .
Note that this model becomes negative when there are more than 25 scoops on the
cone, which might not be a good model for everyone.

2.1 Mathematical Modeling 17

It is common to want to model more than one thing at a time. For example,
you might be able to have scoops of ice cream and peanuts. Since there are multiple
things that can be purchased, we can represent the quantity purchased using a vector
x (i.e. the symbol x now represents a list). We refer to elements of the list using the
notation xi where the symbol i indexes the vector. For example, if we agree that
the first element is the number of scoops of ice cream, then this number could be
referenced using x1. For higher dimensions we use a tuple, such as i, j or (i, j) as
the index.

Let’s change c to be a vector of costs with the same indices as x (i.e., c1 is the
cost per scoop of ice cream and c2 is the cost per cup of peanuts). So now, we write
the total cost of ice cream and peanuts as

c1x1 + c2x2 =
2

∑
i=1

cixi.

Once again, this cost model is probably not valid for all possible values of all ele-
ments of x, but it might be good enough for some purposes.

Often, it is useful to refer to indices as being members of a set. For the example
just given, we could use the set {1,2} to write the total cost as

∑
i∈{1,2}

cixi.

but it would be more common to use a more abstract expression like

∑
i∈A

cixi

where the set A is understood to be the index set for c and x (and for our example
the set A would be {1,2}.)

In addition to summing over an index set, we might want to have conditions that
hold for all members of an index set. This is done simply by using a comma. For
example, if we want to require that none of the values of x can be negative, we would
write

xi ≥ 0, i ∈ A

and we read this line out loud as “x subscript i is greater than or equal to zero for all
i in A.”

There is no law of mathematics or even mathematical modeling that requires the
use of single letter symbols such as x and c or i. It would be perfectly okay for the set
A to be composed of a picture of an ice cream cone and a picture of a cup of peanuts,
but that is hard to work with in some settings. The set could also be {Scoops,Cups},
but that is not commonly done in books because it takes up too much space and
causes lines to overflow. Also, x could be replaced by something like Quantity. Long
names are, importantly, supported by modeling languages such as Pyomo, and it is
generally a good idea to use meaningful names when writing Pyomo models. Spaces
or dashes embedded in names often cause troubles and confusion, so underscores

18 2 Mathematical Modeling and Optimization

are often used in long names instead.

2.2 Optimization

The symbol x is often used as a variable in optimization modeling. It is sometimes
called a decision variable because we build optimization models to help make de-
cisions. This can sometimes cause a little confusion for people who are familiar
with modeling as practiced by statisticians. They often use the symbol x to refer to
data. Thus statisticians give values of x to the computer to have it compute statistics,
while optimization modelers give other data to the computer and ask the computer
to compute good values of x. Of course, symbols other than x can be used; however,
in text books and introductions x is often chosen.

Values such as cost (we used the symbol c) are referred to as data or parameters.
An optimization model can be described with undefined parameter values, but a spe-
cific instance that is optimized must have specific data values, which we sometimes
call instance data.

A model must have an objective to perform optimization, which is expressed
as an objective function. Optimal values of the decision variables result in the best
possible value of the objective function. It is important to note that we did not say
“the optimal values” because it is often the case that more than one set of variable
values result in the best possible value of the objective function. It is common to
write this function in a very abstract way, such as f (x). Whether the best is the
smallest or the largest possible value is determined by the sense of the optimization:
minimize or maximize.

For example, suppose that x is not a vector, but rather a scalar that denotes the
number of scoops of ice cream to buy. If we use the model of happiness given before,
then

f (x)≡ h · (x− (x/5)2) ,
where h is given as data. (It turns out not to matter what value of h is given for the
purpose of finding the x that maximizes happiness in this particular example.) The
optimization problem, as we have modeled it, is given as

max h · (x− (x/5)2) ,
but very careful authors would write

max
x

h · (x− (x/5)2)
to make it clear that x is the decision variable. In this case, there is only one best
value of x, which can be found using numerical optimization. The best value of x
turns out to be fractional, which means that it is not an integer number of scoops.
This model might not be considered useful for a typical ice cream shop, where the
number of scoops must be a non-negative integer. To specify this requirement, we

2.2 Optimization 19

add a constraint to the optimization model:

max
x

h · (x− (x/5)2)
s.t.

x ∈ non-negative integers

where “s.t.” is an abbreviation for either “subject to” or “such that.” Suppose that
the model is not being used in an ice cream shop, but rather at home, where the ice
cream is being served by the model user’s parent. If the parent is willing to make
partial scoops but not willing to go above two scoops, then the constraint

x ∈ non-negative integers

would be replaced with
0 ≤ x ≤ 2.

This is not a perfect model because really, not all fractional values of x would be
reasonable.

To illustrate the model aspects discussed so far, let us return to multiple products
described by an index set A , so x is a vector. Let us make use of the following
model of happiness for a product index i:

hi ·
(
xi − (xi/di)

2) ,
where h and d are both data vectors with the same index set as x. Further, let c be a
vector of costs and u be a vector of the most of any product that can be purchased.
Let us assume that all products can be purchased in fractional quantities for the mo-
ment. Finally, suppose there is a total budget given by b. The optimization problem
would be written as:

max
x ∑

i∈A

hi ·
(
xi − (xi/di)

2) (H)

s.t. ∑
i∈A

cixi ≤ b

0 ≤ xi ≤ ui, i ∈ A

Some modelers would express the last constraint separately:

max
x ∑

i∈A

hi ·
(
xi − (xi/di)

2) (H)

s.t. ∑
i∈A

cixi ≤ b

xi ≤ ui, i ∈ A

xi ≥ 0, i ∈ A

20 2 Mathematical Modeling and Optimization

It is common to put a short, abbreviated name of the model in parentheses on
the same line as the objective. The name (P) is very common, but we used (H) as a
mnemonic for “happiness.” The name (H) allows us to refer to this model later in
the chapter, where we show how to implement it in Pyomo and solve it.

2.3 Linear and Nonlinear Optimization Models

2.3.1 Definition

An expression in an optimization model is said to be linear if it is composed only
of sums of decision variables and/or decision variables multiplied by data. Thus,
a linear expression is an expression that is a non-constant, linear function of the
decision variables. Assume that x is a variable vector, c is a vector of data and
that both are indexed by A . Further assume that 2 and 3 are members of A . The
following are linear expressions:

∑i∈A cixi

∑i∈A xi
x2
c3x2 + c2x3
c3x2 + c2x3 +4

On the other hand, the following expressions are not linear: x2
i , x2x3 and cosine(x2).

Linear expressions often result in problems that can be solved with much less
computational effort than similar models with nonlinear expressions. Consequently,
many modelers make an effort to use linear expressions as much as possible, and
some modelers strive to use only linear expressions. Additionally, many models de-
velop linear approximations to nonlinear models in hopes of finding “good enough”
solutions to the original nonlinear model. In the context of nonlinear models, those
with nonlinear objective functions are typically easier to optimize than models with
nonlinear constraint expressions.

2.3.2 A Linear Approximation

We consider a simple way to linearize (H) to illustrate a linear optimization model.
We describe a version of (H) that does not have a squared objective, but that is
somewhat similar to (H).

For the moment, suppose that x is not an indexed list. We call x a scalar value.
The nonlinearities lie in the expression

h · (x− (x/5)2) ,

2.3 Linear and Nonlinear Optimization Models 21

and in (H) we generalize this to be of the form:

h · (x− (x/d)2) .
To simplify matters, let us require x to be non-negative and less than or equal to u.
We can form a linear expression that has the function value correctly computed at
the endpoints, namely zero and u. The linear function will connect these points with
a line. This expression is zero when x is zero, and it is h · (u− (u/d)2

)
when x=u.

The slope of the line between these two points is

h · (u− (u/d)2
)−0

u−0
= h · (1−u/d2) .

So a simple approximation for h · (x− (x/d)2
)

on the interval [0,u] is

h · (1−u/d2)x.

As can be seen in Figure 2.1, the linear approximation is quite good for the ice
cream example when h = 1, d = 5 and u = 5. In contrast, this simple method would
work very poorly if u = 25 for the same value of d.

Fig. 2.1: Plotting the quadratic happiness function (the thicker line) and the linear approximation
(the thin line). Both lines are drawn for h = 1, d = 5, and u = 5.

For illustrative purposes, to construct an expedient linear approximation to (H)
we replace the objective function with

max
x ∑

i∈A

hi ·
(
1−u/d2

i
)

xi (2.1)

22 2 Mathematical Modeling and Optimization

We say that this expression is linear because the decision variables are only multi-
plied by data, and summed. It is true that the parameter d is squared, but this is not
a decision variable. The numerical value of the entire expression

hi ·
(
1−ui/d2

i
)

is computed by Pyomo before the problem instance is passed to a solver, and the
task of the solver is to find values that are optimal for the decision variables.

2.4 Modeling with Pyomo

We now consider different strategies for formulating and optimizing algebraic opti-
mization models using Pyomo. Although a detailed explanation of Pyomo models is
deferred to Chapter 3, the following examples illustrate the use of Pyomo for model
(H).

2.4.1 An Abstract Formulation

An abstract mathematical formulation relies on unspecified parameter values. Since
model (H) is an abstract model, a natural way of expressing this model in Pyomo
is with Pyomo’s AbstractModel class. A Pyomo AbstractModel defers ini-
tialization of model components until a model instance is created using set and
parameter data. Thus, this modeling approach closely reflects the character of an
abstract model.

Consider the following abstract Pyomo model for model (H):
AbstractH.py - Implement model (H)
from pyomo.environ import *

model = AbstractModel(name="(H)")

model.A = Set()

model.h = Param(model.A)
model.d = Param(model.A)
model.c = Param(model.A)
model.b = Param()
model.u = Param(model.A)

def xbounds_rule(model, i):
return (0, model.u[i])

model.x = Var(model.A, bounds=xbounds_rule)

def obj_rule(model):
return sum(model.h[i] * \

2.4 Modeling with Pyomo 23

(model.x[i] - (model.x[i]/model.d[i])**2) \
for i in model.A)

model.z = Objective(rule=obj_rule, sense=maximize)

def budget_rule(model):
return sum(model.c[i]*model.x[i] for i in model.A) <= \

model.b
model.budgetconstr = Constraint(rule=budget_rule)

Given particular data for the parameters in this model, then one might be inter-
ested in finding an optimal assignment of values to model.x. There are numer-
ous ways to provide data to Pyomo for an abstract model. Here is data (saved in
AbstractH.dat) that defines a suitable happiness objective for one of the au-
thors of this book:

Pyomo data file for AbstractH.py
set A := I_C_Scoops Peanuts ;
param h := I_C_Scoops 1 Peanuts 0.1 ;
param d :=
I_C_Scoops 5
Peanuts 27 ;

param c := I_C_Scoops 3.14 Peanuts 0.2718 ;
param b := 12 ;
param u := I_C_Scoops 100 Peanuts 40.6 ;

This is a Pyomo data file, which includes set and param commands that closely
resemble AMPL data commands.

NOTE: The backslash character at the end of a line tells Python that the line
continues; we use it to help make the lines fit on a book page. In this particular
case it is not strictly required because the line is breaking inside a parenthetical
grouping.

2.4.2 A Concrete Formulation

A concrete Pyomo model initializes components as they are constructed. This allows
modelers to easily make use of native Python data structures when defining a model
instance. There are many ways to implement our model as a concrete model, and
we consider one that uses Python lists and dictionaries.

24 2 Mathematical Modeling and Optimization

ConcreteH.py - Implement a particular instance of (H)
from pyomo.environ import *

model = ConcreteModel(name = "(H)")

A = [’I_C_Scoops’, ’Peanuts’]
h = {’I_C_Scoops’: 1, ’Peanuts’: 0.1}
d = {’I_C_Scoops’: 5, ’Peanuts’: 27}
c = {’I_C_Scoops’: 3.14, ’Peanuts’: 0.2718}
b = 12
u = {’I_C_Scoops’: 100, ’Peanuts’: 40.6}

def x_bounds(m, i):
return (0,u[i])

model.x = Var(A, bounds=x_bounds)

def obj_rule(model):
return sum(h[i] * (model.x[i] - (model.x[i]/d[i])**2)

for i in A)
model.z = Objective(rule=obj_rule, sense=maximize)

model.budgetconstr = \
Constraint(expr = sum(c[i]*model.x[i] for i in A) <= b)

Note that in the budget constr, we define the constraint directly with the expr
keyword argument, however, a construction rule could also be used. Also note that
the lines,

A = [’I_C_Scoops’, ’Peanuts’]
h = {’I_C_Scoops’: 1, ’Peanuts’: 0.1}
d = {’I_C_Scoops’: 5, ’Peanuts’: 27}
c = {’I_C_Scoops’: 3.14, ’Peanuts’: 0.2718}
b = 12
u = {’I_C_Scoops’: 100, ’Peanuts’: 40.6}

could have been placed in a separate Python file and loaded with an import com-
mand. For example, if the data was in mydata.py, we could have placed the fol-
lowing line near the top of the file

from mydata import *

More details concerning AbstractModel and ConcreteModel are given in
the next two chapters.

2.4.3 Linear Version

If we want to modify the abstract model given on page 22 to use expression (2.1),
we would change the objective function expression rule as follows:

2.4 Modeling with Pyomo 25

AbstractHLinear.py - A simple linear version of (H)
from pyomo.environ import *

model = AbstractModel(name="Simple Linear (H)")

model.A = Set()

model.h = Param(model.A)
model.d = Param(model.A)
model.c = Param(model.A)
model.b = Param()
model.u = Param(model.A)

def xbounds_rule(model, i):
return (0, model.u[i])

model.x = Var(model.A, bounds=xbounds_rule)

def obj_rule(model):
return sum(model.h[i] * \

(1 - model.u[i]/model.d[i]**2) * model.x[i] \
for i in model.A)

model.z = Objective(rule=obj_rule, sense=maximize)

def budget_rule(model):
return summation(model.c, model.x) <= model.b

model.budgetconstr = Constraint(rule=budget_rule)

Similarly, the modified concrete Pyomo model uses the same expression, as
shown here:

ConcreteHLinear.py - Linear (H)
from pyomo.environ import *

model = ConcreteModel(name="Linear (H)")

A = [’I_C_Scoops’, ’Peanuts’]
h = {’I_C_Scoops’: 1, ’Peanuts’: 0.1}
d = {’I_C_Scoops’: 5, ’Peanuts’: 27}
c = {’I_C_Scoops’: 3.14, ’Peanuts’: 0.2718}
b = 12
u = {’I_C_Scoops’: 100, ’Peanuts’: 40.6}

def x_bounds(m, i):
return (0,u[i])

model.x = Var(A, bounds=x_bounds)

def obj_rule(model):
return sum(h[i]*(1 - u[i]/d[i]**2) * model.x[i] \

for i in A)
model.z = Objective(rule=obj_rule, sense=maximize)

model.budgetconstr = \
Constraint(expr = sum(c[i]*model.x[i] for i in A) <= b)

26 2 Mathematical Modeling and Optimization

2.5 Solving the Pyomo Model

Pyomo provides automated methods to (1) combine the model and data, (2) send
the resulting model instance to a solver, and (3) recover the results for display and
further use. Pyomo does not, itself, solve optimization problem instances. They are
always passed to a solver of some sort.

2.5.1 Solvers

Pyomo can be installed without any solvers. For example, Pyomo can simply write
out problem instances into files that are suitable as direct input to a solver. This use
of Pyomo might be necessary if the solver is run separately on a different computer.
Typically, however, a solver should be installed and accessible to Pyomo, and most
of the examples in this book make this assumption.

Recall that the objective in (H) is not a linear function of the variable, x, and that
the budget constraint is linear. Although many solvers can solve an instance with a
quadratic objective and linear constraints, some solvers cannot. If the only solver on
your computer is limited to linear problems, then you would need to approximate
(H) with a linear model.

2.5.2 The pyomo Command

The pyomo command provides a command-line interface for solving Pyomo mod-
els. To use the pyomo command, the user must be in a terminal window, but not in
a Python interpreter. To verify that pyomo is properly installed, run the command

pyomo --version

The version number of Pyomo should be displayed without error messages. The
command

pyomo --help

displays some high level help on the terminal. Note that there are two dashes in
--version and --help.

We assume that you have the solver glpk properly installed, which can be veri-
fied by running the command

glpsol --help

in your terminal. If the model file ConcreteHLinear.py is in the current direc-
tory, then the following command will run glpk to find a solution to the problem:

pyomo solve --solver=glpk ConcreteHLinear.py

2.5 Solving the Pyomo Model 27

If you have some other solver that you want to use, substitute its name for glpk.
Note that there are two dashes in --solver. The solve subcommand displays
information about the time required for each step in the optimization process as well
as a little bit of information about the final solution. Information about the values of
the decisions variables is put in the file results.json (or in results.yml if
the Python pyyaml package is installed).

A data file is specified to use the solve subcommand with an abstract model:
pyomo solve --solver=glpk AbstractHLinear.py AbstractH.dat

Many other solvers can be used with Pyomo. For example, if the Gurobi solver is
installed, then the following command can be used to solve the original, quadratic
implementation of (H):

pyomo solve --solver=gurobi AbstractH.py AbstractH.dat

Also note that the solution can be printed to the screen with the --summary option
pyomo solve --solver=glpk --summary ConcreteHLinear.py

2.5.3 Python Scripts

An alternative to using the pyomo command is to add additional Python commands
in the model file to explicitly optimize the model. Such a Python script is then ex-
ecuted using Python from the command line or within a development environment
like Spyder. A script defining a concrete model can easily be solved by adding the
following lines to the bottom:

opt = SolverFactory(’glpk’)

results = opt.solve(instance) # solves and updates instance

instance.display()

If the resulting file is called ConcHLinScript.py, then it can be run from the
terminal with the command line:

python ConcHLinScript.py

Similarly, the following lines can be used to optimize an abstract model:
opt = SolverFactory(’glpk’)

instance = model.create_instance("AbstractH.dat")
results = opt.solve(instance) # solves and updates instance

instance.display()

For abstract models that rely on external data, the call to the create instance
method must specify the data source, as in

instance = model.create_instance("AbstractH.dat")

Chapter 3

Pyomo Overview

Abstract This chapter provides an overview of the modeling strategies and capa-
bilities of Pyomo. We provide a brief overview of the core modeling components
supported by Pyomo. We then discuss the differences between concrete and abstract
models, and give some guidance on when to select one approach over another. We
provide some examples that illustrate the use of the pyomo command and general
scripting capabilities. Finally, we close the chapter with a discussion of some of the
modeling capabilities within Pyomo (e.g., discrete variables and nonlinear models).

3.1 Introduction

Pyomo supports an object-oriented design for the definition of optimization models.
A Pyomo model object contains a collection of modeling components that define
the optimization problem. The Pyomo package includes modeling components that
are necessary to formulate an optimization problem: variables, objectives, and con-
straints, as well as other modeling components that are commonly supported by
modern AMLs, including index sets and parameters. These modeling components
are defined in Pyomo through the following Python classes:

Var optimization variables in a model
Objective expressions that are minimized or maximized in a model
Constraint constraint expressions in a model
Set set data that is used to define a model instance
Param parameter data that is used to define a model instance

In this chapter, we give an overview of these components and how to define and
solve Pyomo models. The basic steps of a simple modeling process are as follows:

1. create an instance of a model using Pyomo modeling components
2. pass this instance to a solver to find a solution
3. report and analyze results from the solver

29© Springer International Publishing AG 2017
W.E. Hart et al., Pyomo — Optimization Modeling in Python, Springer Optimization
and Its Applications 67, DOI 10.1007/978-3-319-58821-6_3

30 3 Pyomo Overview

Pyomo provides a command line utility (the pyomo command) that executes this
process. Additionally, Pyomo supports general scripting with Python where a user
can flexibly control the solution process and develop a custom workflow, such
as solving sequences of problems with modifications, or more complex meta-
algorithms.

In this chapter, we use an example problem to illustrate the process of formulat-
ing a real-world model, including the use of modeling components, indexed com-
ponents, and construction rules. Additionally, we describe Pyomo’s support for two
general model strategies: abstract and concrete models. We use the pyomo com-
mand to analyze these models, and discuss the use of scripting for more advanced
workflows.

3.2 The Warehouse Location Problem

We use the warehouse location problem throughout this chapter, which considers
the optimal locations to build warehouses to meet delivery demands. Let N be a
set of candidate warehouse locations, and let M be a set of customer locations. For
each warehouse n, the cost of delivering product to customer m is given by dn,m.
We wish to determine the optimal warehouse locations that will minimize the total
cost of product delivery. The binary variables yn are used to define whether or not a
warehouse should be built, where yn is 1 if warehouse n is selected and 0 otherwise.
The variable xn,m indicates the fraction of demand for customer m that is served by
warehouse n.

The variables x and y are determined by the optimizer, and all other quantities are
known inputs or parameters in the problem. This problem is a particular description
of the p-median problem, and it has the interesting property that the x variables will
converge to {0,1} even though they are not specified as binary variables.

The complete problem formulation is:

min
x,y ∑

n∈N
∑

m∈M
dn,mxn,m (WL.1)

s.t. ∑
n∈N

xn,m = 1, ∀ m ∈ M (WL.2)

xn,m ≤ yn, ∀ n ∈ N, m ∈ M (WL.3)

∑
n∈N

yn ≤ P (WL.4)

0 ≤ x ≤ 1 (WL.5)

y ∈ {0,1} (WL.6)

Here, the objective (equation WL.1) is to minimize the total cost associated with de-
livering products to all the customers. Equation WL.2 ensures that each customer’s

3.3 Pyomo Models 31

demand is fully met, and equation WL.3 ensures that a warehouse can deliver prod-
uct to customers only if that warehouse is selected to be built. Finally, with equa-
tion WL.4 the number of warehouses that can be built is limited to P.

For our example, we will assume that P = 2, with the following data for ware-
house and customer locations,

Customer locations M = {‘NYC’, ‘LA’, ‘Chicago’, ‘Houston’}
Candidate warehouse locations N = {‘Harlingen’, ‘Memphis’, ‘Ashland’}

with the costs dn,m as given in the following table:

NYC LA Chicago Houston
Harlingen 1956 1606 1410 330
Memphis 1096 1792 531 567
Ashland 485 2322 324 1236

3.3 Pyomo Models

Pyomo supports an object-oriented design where modeling components are added
to a Pyomo model to define the optimization problem. In this section, we give an
overview of the common modeling components, discuss abstract and concrete mod-
els, and provide complete Pyomo examples of the warehouse location problem.

3.3.1 Components for Variables, Objectives and Constraints

Optimization problems require, at least, one variable and an objective function. Most
problems also include constraints. The Pyomo classes for implementing these mod-
eling components are Var, Objective, and Constraint. The following exam-
ple shows how these components could be defined:

model.x = Var()
model.y = Var(bounds=(-2,4))
model.z = Var(initialize=1.0, within=NonNegativeReals)

model.obj = Objective(expr=model.x**2 + model.y + model.z)

model.eq_con = Constraint(expr=model.x + model.y + model.z \
== 1)

model.ineq_con = Constraint(expr=model.x + model.y <= 0)

In this example, we have created three optimization variables (x, y, and z), a single
objective, and two constraints. For each optimization variable, we create an instance
of the Var class and add that instance as an attribute to the model object. The code
model.x=Var() creates an instance of the Pyomo class Var and makes it acces-
sible by model.x. Furthermore, the model object identifies when a component is

32 3 Pyomo Overview

being added and performs special processing that includes, for example, setting the
name of the instance of Var to “x”, and setting a reference to the owner model.

This example declares x as a continuous variable, but keyword arguments can be
used to define properties of the variable. For example, bounds is used to set lower
and upper bounds, initialize is used to set initial values, and within is used
to set the domain. In this example, model.y has a lower bound of −2 and an upper
bound of 4, and model.z has a lower bound of 0, and no upper bound (since the
keyword argument within is set to non-negative reals).

NOTE: The use of keyword arguments is common in the constructors for Py-
omo components to specify component properties. See Chapter 4 for more de-
tails about supported keyword arguments for Pyomo components.

This example also defines an objective function using the Objective compo-
nent. Here, the expr keyword is used to define the expression for the objective
function. By default, optimization objectives are minimized, but the sense key-
word can be set to maximize for maximization problems. This example also de-
clares an equality constraint and inequality constraint using Constraint compo-
nents. The expr keyword is used again to define the mathematical expressions for
the constraints, including the logical operator separating the left hand side expres-
sion and the right hand side expression. Constraints can include a logical operator
that indicates equal to (==), less than or equal to (<=), or greater than or equal to
(>=). See Chapter 4 for a detailed description of these components and the available
keyword arguments.

NOTE: In the previous example, the objective and constraints were defined
with the expr keyword. While this is convenient for illustrating the examples
with few lines of code, these components are often defined using construction
rules, which are discussed in more detail in Sections 3.3.3 and 4.2.1.

3.3.2 Indexed Components

In the previous example, each of the modeling components were scalar. That is,
each of the optimization variables x, y, and z were single values only (not vectors
or arrays). The constraints were also scalar (each declaration created only a single
mathematical constraint). When modeling large, complex applications, it is com-
mon to have vectors of variables and constraints whose dimension and indexing is
determined according to model data. This is handled within Pyomo through indexed
components .

To illustrate the concept of an indexed component, consider the warehouse loca-
tion problem (WL). We could formulate this problem using only scalar components,

3.3 Pyomo Models 33

and, for example, create separate x variables for each pair of warehouses and cus-
tomers,

model.x_Harlingen_NYC = Var(bounds=(0,1))
model.x_Harlingen_LA = Var(bounds=(0,1))
model.x_Harlingen_Chicago = Var(bounds=(0,1))
model.x_Harlingen_Houston = Var(bounds=(0,1))
model.x_Memphis_NYC = Var(bounds=(0,1))
model.x_Memphis_LA = Var(bounds=(0,1))
#...

We could manually expand the constraint described in WL.4 as,
model.maxY = Constraint(expr=model.y_Harlingen + \

model.y_Memphis + model.y_Ashland <= P)

and write all the constraints in equation (WL.2) explicitly as,
model.one_warehouse_for_NYC = \

Constraint(expr=model.x_Harlingen_NYC + \
model.x_Memphis_NYC + model.x_Ashland_NYC == 1)

model.one_warehouse_for_LA = \
Constraint(expr=model.x_Harlingen_LA + \
model.x_Memphis_LA + model.x_Ashland_LA == 1)

#...

Using indexed components, we can provide Pyomo with the list of valid indices
for the x and y variables when we declare them. Using the following Python data:

N = [’Harlingen’, ’Memphis’, ’Ashland’]
M = [’NYC’, ’LA’, ’Chicago’, ’Houston’]

we can declare variables as follows:
model.x = Var(N, M, bounds=(0,1))
model.y = Var(N, within=Binary)

We refer to N and M as index sets for the indexed variables model.x and model.y.
Specifically, the variable y is indexed over N, and the variable x is a two-dimensional
array that is indexed over both N and M. With this declaration, an element of x can
be accessed by model.x[i,j] where i and j are elements of the sets N and M,
respectively.

NOTE: Pyomo modeling components can include any number of index sets as
unnamed arguments in their declaration. These index sets specify the valid in-
dices for individual elements of the component. (Note that they must be passed
before any other named keyword arguments.)

Given these declarations, constraint (WL.4) can be defined as
model.num_warehouses = Constraint(expr=sum(model.y[n] for \

n in N) <= P)

34 3 Pyomo Overview

This declaration uses Python’s iteration syntax to sum over a set of indexed vari-
ables. The list comprehension syntax enables a concise specification of the sum-
mation, where the syntax specifies that the terms model.y[n] are generated by
iterating over the set N. As these terms are generated, the function sum adds them
together to form the overall expression. Similarly, the objective can be defined as

model.obj = Objective(expr=sum(d[n,m]*model.x[n,m] for n \
in N for m in M))

where the terms d[n,m]*model.x[n,m] are generated by iterating over both N
and M.

3.3.3 Construction Rules

Nearly all of Pyomo’s modeling components can be indexed, and the construction of
many indexed constraints is performed with construction rules. Consider constraint
(WL.2):

∑
n∈N

xn,m = 1, ∀ m ∈ M

This mathematical notation indicates that there is a single constraint for each m in
the set M. The Constraint component can be declared as an indexed constraint
over the elements in this set. However, we need a mechanism to provide Pyomo with
the explicit expressions for each element in M. Pyomo allows model components to
be initialized with user-defined functions, which we call rules.

The following example illustrates the use of a construction rule to define con-
straint (WL.2):

def one_per_cust_rule(model, m):
return sum(model.x[n,m] for n in N) == 1

model.one_per_cust = Constraint(M, rule=one_per_cust_rule)

The last line in this example declares the constraint by creating a Constraint
component that is indexed over the set M. The rule keyword argument indicates
that the function one per cust rule is used to construct each constraint.

The first argument in the function one per cust rule is the model instance
being constructed. It is followed by the particular values for the indices of the con-
straint being constructed. When Pyomo constructs the Constraint object, the
construction rule is called for each of the values of the specified index sets.

NOTE: Pyomo expects a construction rule to return an expression for every
index value. If no constraint is needed for a particular combination of indices,
then the value Constraint.Skip can be returned instead.

Construction rules can be used for most modeling components, using the rule

3.3 Pyomo Models 35

keyword argument, even if the component is not indexed. Although the function
arguments for component rules are the same for all component types, the following
table illustrates that the expected type of the return value is different:

Component Construction Rule Return Types
Set A Python set or list object
Param An integer or float value
Objective An expression
Constraint A constraint expression.

3.3.4 Abstract and Concrete Models

Pyomo supports two strategies for model declaration: concrete models, which im-
mediately construct model components, and abstract models, which defer compo-
nent construction. Abstract models reflect the structure of many mathematical op-
timization formulations. For example, the formulation of the warehouse location
problem (WL) on page 30 is written in a general manner that describes a class of
optimization problems. However, we cannot solve this problem yet since the actual
data for the problem (N, M, d, and P) has not been specified. A solver must be given
a specific instance of a problem (with the data specified).

In Pyomo, an abstract model is declared first, and component construction is de-
layed until the data is loaded and Pyomo creates the model instance. This modeling
approach is illustrated in the top pane of Figure 3.1. An AbstractModel object
is created, and then the data for a particular problem is given to Pyomo, and then
Pyomo performs the construction process in order to create an instance of the model
with all the variables, constraint expressions, and objective expressions that can be
sent to a solver. This requires a two-pass approach where the model is declared in
the first pass, and subsequently the model is constructed using data values that are
specified separately. To support delayed construction, the model must be defined
using construction rules.

A concrete model can be used when data is available before model components
are declared. Concrete models support a more programmatic style where the model
instance is created immediately; model components are constructed and initialized
on the first pass as Python executes the model script. This modeling approach is
illustrated in the bottom pane of Figure 3.1. A ConcreteModel object is cre-
ated, and the data needs to be present before each component is declared. As Python
executes your model script, the particular model instance and its components are
created immediately as Python encounters the component declaration. Once the ex-
ecution through the Python file is completed the model is ready to be sent to the
solver (i.e., a single pass). Note that, at this point, the ConcreteModel is the
specific instance.

36 3 Pyomo Overview

NOTE: Construction rules can be still be used with concrete models (the rules
are immediately fired as they are encountered in the model’s Python file).

AbstractModel instance solver

data

construction

data ConcreteModel
(instance) solver

Fig. 3.1: This figure describes the construction process for both abstract and concrete models. The
top pane describes the declarative style used for abstract models. The AbstractModel is first
created. Then, given a particular realization of the data, Pyomo performs the construction process
in order to create an instance of the model that can then be sent to the solver. The bottom pane
describes the programmatic style used for concrete models. As Python executes the model script,
the component objects are constructed immediately using data that is previously declared. The
particular model instance is ready to be sent to the solver once the first pass is complete.

The choice of which model object to use (AbstractModel or
ConcreteModel) is largely a matter of taste and preference. The biggest dif-
ference between the use of AbstractModel or ConcreteModel relates to the
specification of data. When using an AbstractModel, the names and structure
of the data that will be used in a model is declared prior to construction (but not
the values themselves). This means that Pyomo is aware of the existence of the
sets and parameters that will be encountered when constructing the instance. More
importantly, Pyomo knows the associated names and types of these quantities and
something about the relationships among them (e.g., the variable y is indexed by set
N). This allows the user to specify the data using any number of Pyomo supported
data formats while referring to these quantities by name. Pyomo includes many op-
tions for supplying data to an abstract model, including a data command file that
specifies values for set and parameter data. The syntax of Pyomo’s data command
files is very similar to the data command syntax supported by AMPL [2].

Concrete models on the other hand, require that the data be available before in-
dividual components are declared. This programmatic approach allows for straight-

3.3 Pyomo Models 37

forward use of native Python data types when creating a model instance. Therefore,
if you are more comfortable building models in a procedural programming environ-
ment (like Python or MATLAB), or if your application requires a more extensive
workflow than that supported by the pyomo command, then a ConcreteModel
is more appropriate. This is especially true if your data can be easily loaded into
Python through other Python packages (e.g., pandas).

NOTE: In general, an AbstractModel is more straightforward for users
that are unfamiliar with Python or prefer to work in a more traditional AML
environment. A ConcreteModel often requires more Python coding on the
part of the user to load the data (e.g., using an existing Python package for the
raw data format) and apply it to the model, but offers transparent control over
execution order as well as pre- and post-analysis.

3.3.5 A Concrete Model for the Warehouse Location Problem

The warehouse location problem can be represented as a concrete model as follows:

1 # wl_concrete.py: ConcreteModel version of warehouse \
location determination problem

2 from pyomo.environ import *
3
4 model = ConcreteModel(name="(WL)")
5
6 N = [’Harlingen’, ’Memphis’, ’Ashland’]
7 M = [’NYC’, ’LA’, ’Chicago’, ’Houston’]
8 d = {(’Harlingen’, ’NYC’): 1956, \
9 (’Harlingen’, ’LA’): 1606, \

10 (’Harlingen’, ’Chicago’): 1410, \
11 (’Harlingen’, ’Houston’): 330, \
12 (’Memphis’, ’NYC’): 1096, \
13 (’Memphis’, ’LA’): 1792, \
14 (’Memphis’, ’Chicago’): 531, \
15 (’Memphis’, ’Houston’): 567, \
16 (’Ashland’, ’NYC’): 485, \
17 (’Ashland’, ’LA’): 2322, \
18 (’Ashland’, ’Chicago’): 324, \
19 (’Ashland’, ’Houston’): 1236 }
20 P = 2
21
22 model.x = Var(N, M, bounds=(0,1))
23 model.y = Var(N, within=Binary)
24
25 def obj_rule(model):

38 3 Pyomo Overview

26 return sum(d[n,m]*model.x[n,m] for n in N for m in \
M)

27 model.obj = Objective(rule=obj_rule)
28
29 def one_per_cust_rule(model, m):
30 return sum(model.x[n,m] for n in N) == 1
31 model.one_per_cust = Constraint(M, \

rule=one_per_cust_rule)
32
33 def warehouse_active_rule(model, n, m):
34 return model.x[n,m] <= model.y[n]
35 model.warehouse_active = Constraint(N, M, \

rule=warehouse_active_rule)
36
37 def num_warehouses_rule(model):
38 return sum(model.y[n] for n in N) <= P
39 model.num_warehouses = \

Constraint(rule=num_warehouses_rule)

This script begins by importing the Pyomo environment, which defines the
Python classes used to build a model. Lines 4 creates a ConcreteModel and
provides a name.

Lines 6-20 define the data for our problem. The Python lists N and M are used to
specify the valid warehouse locations and the customer locations respectively. The
Python dictionary d defines the costs associated with serving each customer from
each location, and line 20 specifies P, which is the number of warehouses we want
to place. These native Python data structures are used to declare and construct the
Pyomo modeling components (the Var, Objective, and Constraint) objects.

Lines 22 and 23 declare and construct the variables for the problem. The model
object is a ConcreteModel, and once these lines are executed, the variables x and
y are completely constructed with known indices. Lines 25 and 26 define the con-
struction rule for the objective function, and line 27 declares the objective function
(in model.obj). As soon as line 27 executes, the rule that is declared on lines 25
and 26 is called to construct the expression for the objective function. Similarly, in
the remaining lines of the Python file, the constraint rules are declared, followed by
the constraint objects themselves. Since this is a ConcreteModel, the constraint
rules are called immediately (as soon as Python executes lines 31, 35, and 39).

This model can be solved using the pyomo command,
pyomo solve --solver=glpk wl_concrete.py

By default, the results are stored in a file indicated by the output from pyomo. The
results can also be printed to the screen using the --summary option.

In this example, the python data for the problem (N, M, d, and P) were explicitly
defined in the model file. While this is convenient to create a self-contained example,
in practice is it often more convenient to load data from another source (e.g., another
python file).

3.3 Pyomo Models 39

The earlier ConcreteModel examples in this chapter included the data for the
model explicitly in the main Python file with the model. This is typically not viewed
as good practice, since we frequently want to solve the same model (or model class)
with different data. Instead, we could import the data into our model file or execution
script. Then, we would only need to change one line in our file to run with different
data. We could also load our data from an external file.

Consider, for example, Figure 3.2, which shows some example data specified
in Microsoft Excel. The following script loads this data from Excel. This example
makes use of the Python sys package to allow a user to specify the name of the Excel
file to load and the value of the parameter P on the command line.

wl_excel.py: Loading Excel data using Pandas
import pandas
import sys
from pyomo.environ import *

read the data from excel using pandas
df = pandas.read_excel(sys.argv[1], ’Delivery Costs’, \

header=0, index_col=0)

N = list(df.index.map(str))
M = list(df.columns.map(str))
d = {(r, c):df.at[r,c] for r in N for c in M}
P = int(sys.argv[2])

create the model (could be imported)
model = ConcreteModel(name="(WL)")

model.x = Var(N, M, bounds=(0,1))
model.y = Var(N, within=Binary)

def obj_rule(model):
return sum(d[n,m]*model.x[n,m] for n in N for m in M)

model.obj = Objective(rule=obj_rule)

def one_per_cust_rule(model, m):
return sum(model.x[n,m] for n in N) == 1

model.one_per_cust = Constraint(M, rule=one_per_cust_rule)

def warehouse_active_rule(model, n, m):
return model.x[n,m] <= model.y[n]

model.warehouse_active = Constraint(N, M, \
rule=warehouse_active_rule)

def num_warehouses_rule(model):
return sum(model.y[n] for n in N) <= P

model.num_warehouses = Constraint(rule=num_warehouses_rule)

solve the model and report the results
solver = SolverFactory(’glpk’)
solver.solve(model)
model.pprint()

40 3 Pyomo Overview

Fig. 3.2: This figure shows the data for our warehouse location problem as formatted in Microsoft
Excel.

3.3.6 Modeling Components for Sets and Parameters

Abstract models require declarations for sets and parameters that are used in the
model. The Pyomo Set and Param components provide this functionality and sev-
eral other features, including data validation.

A Pyomo Set component is used to declare valid indices for any component
that is indexed. For example, in the context of our warehouse location problem, we
have two sets: N stores the valid warehouse locations and M stores the customer
locations. We can easily declare these sets using the following code:

model.N = Set()
model.M = Set()

These Set objects can be used to define indexed variables or constraints:
model.x = Var(model.N, model.M, bounds=(0,1))
model.y = Var(model.N, within=Binary)

This example passes Set objects into the Var constructor, rather than the Python
lists used for the concrete model in the previous section. A Set component can be
initialized with the initialize keyword argument, using a Python set, list, or
tuple. The Set component can also be initialized with external data sources.

Pyomo Set objects can also be indexed by other sets. Consider the following
example:

model.PremierSundaes = Set()
model.Toppings = Set(model.PremierSundaes)

The set model.Toppings is an indexed set. If model.PremierSundaes
is given the values {‘PBC-Banana’, ‘Very Berry’ }, then we can define toppings
for each of these indices. For example, model.Toppings[’PBC-Banana’]
may contain the set {‘Peanut Butter’, ‘Chocolate Fudge’, ‘Banana’ }, whereas
model.Toppings[’Very Berry’] may contain {‘Strawberries’, ‘Raspber-
ries’, ‘Blueberries’, ‘Crunch-berries’}.

A Pyomo Param component is used to define data values for our problem. In the
context of the warehouse location problem, two pieces of data need to be specified:

3.3 Pyomo Models 41

P and dn,m. These parameters can be declared using the following code:
model.d = Param(model.N,model.M)
model.P = Param()

This example declares a scalar parameter P and an indexed parameter d. The pa-
rameter d is indexed by the Pyomo sets for the warehouse and customer locations
that we defined earlier. As with the Set object, values for these parameters could be
provided through the initialize keyword argument using a Python dictionary,
by defining a construction rule, or via an external data source.

By default, parameters are immutable, meaning that once their values are set,
the values cannot be changed. This default behavior allows for increased efficiency
within Pyomo when handling expressions. However, you can define a parameter
whose values are mutable with the mutable=true keyword argument. This can
be useful if you have a model that you want to solve multiple times with different
values of some of the parameters.

3.3.7 An Abstract Model for the Warehouse Location Problem

The warehouse location problem can be represented as an abstract model as follows:

1 # wl_abstract.py: AbstractModel version of warehouse \
location determination problem

2 from pyomo.environ import *
3
4 model = AbstractModel(name="(WL)")
5 model.N = Set()
6 model.M = Set()
7 model.d = Param(model.N,model.M)
8 model.P = Param()
9 model.x = Var(model.N, model.M, bounds=(0,1))

10 model.y = Var(model.N, within=Binary)
11
12 def obj_rule(model):
13 return sum(model.d[n,m]*model.x[n,m] for n in \

model.N for m in model.M)
14 model.obj = Objective(rule=obj_rule)
15
16 def one_per_cust_rule(model, m):
17 return sum(model.x[n,m] for n in model.N) == 1
18 model.one_per_cust = Constraint(model.M, \

rule=one_per_cust_rule)
19
20 def warehouse_active_rule(model, n, m):
21 return model.x[n,m] <= model.y[n]
22 model.warehouse_active = Constraint(model.N, model.M, \

rule=warehouse_active_rule)
23

42 3 Pyomo Overview

24 def num_warehouses_rule(model):
25 return sum(model.y[n] for n in model.N) <= model.P
26 model.num_warehouses = \

Constraint(rule=num_warehouses_rule)

Line 4 creates an AbstractModel object. Lines 5 through 8 declare the model
sets and parameters, and no data needs to be associated with these components yet.
Likewise, lines 9 and 10 declare the model variables x and y. Pyomo knows that
these components will be indexed by the sets model.N and model.M, but does
not yet know the specific indices.

The objective construction rule is defined on lines 12 and 13, and the objective
model.obj is declared on line 14. Since this is an abstract model, the objective
rule obj rule is not yet called. At this point, Pyomo knows what rule to call to
construct the objective component, but it has not called the constructor because this
is an abstract model. Constraint rules and constraint components are declared in a
similar manner.

This script can be executed with the python command, but that would not ac-
tually do anything. This script declares the model, but it does not define the model
data or create the problem instance for the solver. The action of applying a data file
to this abstract model can be scripted explicitly in Python code, or it can be done
using the pyomo command.

Data can be expressed in several different formats. For example, the following
Pyomo data file can be used:

wl_data.dat: Pyomo format data file for the warehouse \
location problem

set N := Harlingen Memphis Ashland ;
set M := NYC LA Chicago Houston;

param d :=
Harlingen NYC 1956
Harlingen LA 1606
Harlingen Chicago 1410
Harlingen Houston 330
Memphis NYC 1096
Memphis LA 1792
Memphis Chicago 531
Memphis Houston 567
Ashland NYC 485
Ashland LA 2322
Ashland Chicago 324
Ashland Houston 1236

;

param P := 2 ;

This problem can be solved using the following pyomo command:

3.4 Solving the Pyomo Model 43

pyomo solve --solver=glpk wl_abstract.py wl_data.dat

The --summary flag can be used to provide more detailed output about the solu-
tion.

When pyomo runs, it executes wl abstract.py to create an
AbstractModel with the name model. This model object contains the Pyomo
modeling components that have been declared. Then pyomo reads the data file
wl data.dat and applies this data to the Set and Param components in the
same order that the components were declared in the model. Next, the pyomo com-
mand constructs all of the remaining components in declaration order: the variables,
the objective, and the constraints. After the model is constructed, pyomo calls the
solver to find the solution.

3.4 Solving the Pyomo Model

As shown previously, the pyomo command can be used to solve a problem by spec-
ifying the python model file and the data file on the command line. The pyomo
command is a pre-defined script that builds the model instance using the specified
data, sends that instance to a solver to be solved, and reports the solution if success-
ful. The Pyomo package also allows users to control this flow by writing their own
script. Writing a script to drive the process is common with concrete models. We
will provide an introduction to both of these approaches.

3.4.1 Using the pyomo Command

As noted previously, the Pyomo software distribution includes a pre-defined exe-
cution script, the pyomo command, that can be used to solve Pyomo models. The
pyomo solve command automatically executes the following steps:

1. Create the model (abstract or concrete)
2. Read the data and generate a model instance (if applicable)
3. Apply a solver to the model instance
4. Load the results into the model instance
5. Display the solver results

For example, the following command solves the warehouse location problem de-
fined in wl concrete.py using the LP solver glpk:

pyomo solve --solver=glpk wl_concrete.py

Similarly, the following command uses glpk to solve the model declared in
wl abstract.py with data from wl data.dat:

pyomo solve --solver=glpk wl_abstract.py wl_data.dat

44 3 Pyomo Overview

When the pyomo command loads a user-defined Pyomo model, it looks for a
ConcreteModel or AbstractModel object named model. We have used
this name for all models introduced in this chapter. However, if a name other than
model is used, this can be specified via the pyomo option
--model-name=MODEL NAME (e.g., --model-name=mymodel).

Documentation of the command-line options for pyomo is generated by specify-
ing the --help option. Help on a subcommand like solve can be obtained by us-
ing --help after the subcommand (e.g., pyomo solve --help. For some op-
tions, a valid solver must be specified through the --solver option before the help
can be seen. Options can control how much information is printed to the screen, in-
cluding --summary to print a summary of the solution after the problem is solved,
and --stream-solver to print the solver output to the screen while solving. See
Chapter 5 for further details about the pyomo command.

3.4.2 Scripting the Solution Process

Pyomo users can leverage Python’s powerful scripting capabilities to execute cus-
tom workflows that manipulate and optimize models. Consider the following script,
which imports a model from wl concrete.py, creates a solver interface, per-
forms optimization, and displays the results:

from pyomo.environ import * # import pyomo environment
from wl_concrete import model # import model

solver = SolverFactory(’glpk’) # create the glpk solver
solver.solve(model) # solve

model.y.pprint() # print the optimal warehouse locations

This example uses the Python import statement to import the model from our
code in wl concrete.py. Pyomo’s implementation of pprint is used to show
the results, but we can also implement a problem-specific output. For example:

from pyomo.environ import * # import pyomo environment
from wl_concrete import model, N, M # import model and sets

solver = SolverFactory(’glpk’) # create the glpk solver
solver.solve(model) # solve

produce nicely formatted output
for wl in N:

if value(model.y[wl]) > 0.5:
customers = [str(cl) for cl in M if \

value(model.x[wl, cl] > 0.5)]
print(str(wl)+’ serves customers: ’+str(customers))

else:
print(str(wl)+": do not build")

which produces the output

3.4 Solving the Pyomo Model 45

Harlingen serves customers: [’LA’, ’Houston’]
Memphis: do not build
Ashland serves customers: [’NYC’, ’Chicago’]

NOTE: Once a Pyomo model has been constructed, the model can be printed
using the pprint method, model.pprint(). This summarizes the infor-
mation in the Pyomo model, including the constraint and objective expressions.
This can be a very useful debugging tool when a model is not generating the
expected results, since it shows the fully expanded version of the model.

Abstract models can also be used in scripts, but a concrete instance must be
created from the AbstractModel object using the create instancemethod.
The following example takes an AbstractModel, constructs the instance using a
data file called wl data.dat, solves the instance, and prints some results:

instance = model.create_instance(’wl_data.dat’)
solver = SolverFactory(’glpk’)
solver.solve(instance)
instance.y.pprint()

NOTE: This section has only scratched the surface of what is possible with the
pyomo command and with scripting. Both of these topics are covered in more
detail in Chapters 5 and 14, respectively.

Chapter 4

Pyomo Models and Components: An

Introduction

Abstract This chapter describes the core classes that are used to define optimization
models in Pyomo. Most of the discussion focuses on modeling components that
are used to declare parts of a model. We include a discussion of the options that
can be used when declaring the components and information about key component
attributes and methods.

4.1 An Object-Oriented AML

Pyomo supports an object-oriented approach for representing mathematical opti-
mization models. A model object is created, and then modeling components are
added to this object to declare different parts of the model. Pyomo includes mod-
eling components that are commonly supported by modern AMLs: variables, con-
straints, objectives, index sets, and symbolic parameters. In this chapter we will
describe Pyomo modeling components. In subsequent chapters, additional compo-
nents are introduced that provide enhanced functionality to represent advanced op-
timization model features.

Users can create two types of models in Pyomo: concrete and abstract. A concrete
model is constructed “on-the-fly” as each model component is declared. Therefore,
the data associated with a concrete model must be specified before model com-
ponents are declared. A user can leverage native Python data structures to define
components in a concrete model. The ConcreteModel class is used to represent
a concrete model.

In contrast, an abstract model supports complete declaration of a model ab-
stractly. A specific problem instance is not constructed until all components are
declared and the data is provided. The AbstractModel class is used to create an
abstract model. Because abstract models allow components to reference data before
it is defined, they often rely on Pyomo data components such as Set and Param
to provide an abstract definition of the data used to construct the model (although
these components can be used on concrete models as well).

47© Springer International Publishing AG 2017
W.E. Hart et al., Pyomo — Optimization Modeling in Python, Springer Optimization
and Its Applications 67, DOI 10.1007/978-3-319-58821-6_4

48 4 Pyomo Components

The following are the core modeling components in Pyomo:

Var The Var component is used to represent optimization variables. Py-
omo supports continuous and discrete variables, and includes sev-
eral pre-defined domains.

Objective The Objective component defines the function or functions that
are to be optimized by the solver. This component contains the ex-
pression used to define the objective function, and a flag to indicate
the sense (maximize or minimize).

Constraint Constraints are used to define additional restrictions on the op-
timization variables. The Constraint component contains ex-
pressions and the appropriate relational operator. Pyomo supports
equality (==) and general inequality (<= or >=) constraints.

Set The Set component represents a collection of data that can include
numeric (e.g., integer), or symbolic (e.g., string) elements. They are
most commonly used to define valid indices for other components.
Several common set operations are also supported.

Param The Param component is used to represent numerical or symbolic
values for data in the optimization problem. In contrast with simple
Python data types (e.g., float), Param objects support the ability
to change values (meaning they are mutable), and include features
like sparse representations and default values.

Expression The Expression component can be used to create a Pyomo ex-
pression that can be reused in different parts of a Pyomo model.
This is useful for representing common sub-expressions for mem-
ory efficiency. Furthermore, like mutable parameters, the underly-
ing expression can be changed between calls to the solver.

Suffix Frequently, there is a need to provide meta-data about a model or a
component (e.g., dual information from a constraint). This is sup-
ported through the Pyomo Suffix component.

In this chapter, we will describe each of these components in more detail. A vari-
ety of other modeling components included in Pyomo, some of which are briefly
discussed at the end of this chapter and covered in more detail in the remaining
chapters of the book.

NOTE: Unless otherwise stated, the code snippets and examples used in this
chapter refer to concrete models.

4.2 Common Component Paradigms

There are behaviors that are common across most of the Pyomo modeling compo-
nents listed in the previous section. Additionally, there are some common paradigms

4.2 Common Component Paradigms 49

that are adopted across many components. In this section, we will describe these
common behaviors.

4.2.1 Indexed Components

As shown in the previous chapter, Pyomo components can be declared as individual,
atomic entities or as indexed collections. Indexed components will appear in several
of the examples that follow in this chapter. Consider the following model:

model = ConcreteModel()
model.A = Set(initialize=[1,2,3])
model.B = Set(initialize=[’Q’, ’R’])
model.x = Var()
model.y = Var(model.A, model.B)
model.o = Objective(expr=model.x)
model.c = Constraint(expr = model.x >= 0)
def d_rule(model, a):

return a*model.x <= 0
model.d = Constraint(model.A, rule=d_rule)

The component c specifies a single constraint in this model, and the component
d specifies a collection of constraints indexed over the set A. The Constraint
component can be used to declare both simple constraints and indexed constraints.
In general, components can also be indexed by multiple index sets. For example,
model.y is indexed over both A and B, and it can be referenced by
model.y[i,j] where i is any valid element from model.A and j is any valid
element from model.B (e.g., model.y[2,’Q’]).

NOTE: Any unnamed arguments in a component constructor are assumed to
be index sets for the component. They specify the set of valid indices for the
component.

Declaration of arguments for indexed components is often more complex. For
example, the initialize keyword argument can be used when declaring a single
variable,

model.x = Var(initialize=3.14)

Specifying a value for these types of keyword arguments is straightforward when
the component is not indexed. When the component is indexed, however, we may
want to specify a different value for each of the indices. There are three approaches
typically supported for these kinds of keyword arguments.

• When a single scalar value is passed, then that value is used for all the indices
of the component.

• In many cases, you can also pass a Python dictionary (index-value pairs) where
the keys of the dictionary agree with the keys of the index set for the component.

50 4 Pyomo Components

• It is also possible to pass in a function (rule) that will be called to provide the
value for every index in the component.

These uses are illustrated here:
model.A = Set(initialize=[1,2,3])
model.x = Var(model.A, initialize=3.14)
model.y = Var(model.A, initialize={1:1.5, 2:4.5, 3:5.5})
def z_init_rule(m, i):

return float(i) + 0.5
model.z = Var(model.A, initialize=z_init_rule)

4.3 Variables

Pyomo variables are created using the Var class, which can represent a single value
or an array of values. Variables can have initial values, and the value of a variable
can be retrieved and set by the user or by a solver as part of the solution process.

4.3.1 Var Declarations

The following code provides a simple declaration of a non-indexed Var object.
model.x = Var()

Named and un-named arguments are supported, and Table 4.1 provides a list of the
common arguments that can be passed when declaring the Var component

keyword description acceptable values

<un-named> reserved for specifying index sets any number of Pyomo Set objects or
Python lists

within or
domain

specifies the valid domain or values
for a variable

a Pyomo Set object, Python list, or
rule function

bounds provide lower and upper bounds for
the variable

a 2-tuple, or a rule function

initialize provides initial values for the vari-
ables

a scalar value, Python dictionary of
index-value pairs, or rule function

Table 4.1: Common Declaration Arguments for Var Component

The domain of a variable (i.e., the set of legal values) is specified with either the
domain or within keyword options to the Var constructor:

4.3 Variables 51

model.A = Set(initialize=[1,2,3])
model.y = Var(within=model.A)
model.r = Var(domain=Reals)
model.w = Var(within=Boolean)

In this example, model.y is only allowed to take on the integer values 1, 2, or
3. The variable model.r can have any real value, and model.w is restricted to
be binary (that is 0/1 or True/False). If the domain is not specified, the default is
the Reals virtual set. Other virtual sets supported by Pyomo are defined in Ta-
ble 4.2. We note that these virtual sets can also be used in other contexts (e.g., when
constructing Param objects).

Any The set of all possible values, except None
AnyWithNone The set of all possible values
EmptySet The set with no data values
Reals The set of floating point values
PositiveReals The set of strictly positive floating point values
NonPositiveReals The set of non-positive floating point values
NegativeReals The set of strictly negative floating point values
NonNegativeReals The set of non-negative floating point values
PercentFraction The set of floating point values in the interval [0,1]
UnitInterval The same as ’PercentFraction’
Integers The set of integer values
PositiveIntegers The set of positive integer values
NonPositiveIntegers The set of non-positive integer values
NegativeIntegers The set of negative integer values
NonNegativeIntegers The set of non-negative integer values
Boolean The set of boolean values, which can be represented as

False/True, 0/1, ‘False’/‘True’ and ‘F’/‘T’
Binary The same as ‘Boolean’

Table 4.2: Predefined virtual sets in Pyomo.

The domain or within argument can also accept a function, which is used to
define the domain for individual elements of an indexed variable. For example:

model.A = Set(initialize=[1,2,3])
def s_domain(model, i):

return IntegerInterval(bounds=(i,i+1))
model.s = Var(model.A, domain=s_domain)

In this example, s is an indexed variable whose individual entities are defined over
consecutive integer intervals.

NOTE: While Pyomo supports a general representation for restricting the do-
main of the variables, not all solvers support this general behavior. You may
need to restrict your definitions to those supported by the selected solver.

52 4 Pyomo Components

Variable bounds can be explicitly specified with the bounds keyword option:
model.A = Set(initialize=[1,2,3])
model.a = Var(bounds=(0.0,None))

lower = {1:2.5, 2:4.5, 3:6.5}
upper = {1:3.5, 2:4.5, 3:7.5}
def f(model, i):

return (lower[i], upper[i])
model.b = Var(model.A, bounds=f)

The bounds option can specify a 2-tuple with lower and upper values. Alterna-
tively, it can specify a function that returns a 2-tuple for each variable index. Note
that None can be used in place of the lower or upper bound to indicate that no bound
should be enforced. In the code snippet above, model.a has a lower bound of 0,
and does not have an upper bound, while model.b has different bounds for each
of its indices. For example, model.b[3] has a lower bound of 6.5 and an upper
bound of 7.5.

The initial value of variables can be set with the initialize keyword argu-
ment as in the following example:

model.A = Set(initialize=[1,2,3])
model.za = Var(initialize=9.5, within=NonNegativeReals)
model.zb = Var(model.A, initialize={1:1.5, 2:4.5, 3:5.5})
model.zc = Var(model.A, initialize=2.1)

print(value(model.za)) # 9.5
print(value(model.zb[3])) # 5.5
print(value(model.zc[3])) # 2.1

For non-indexed variables, a single scalar value is provided to the initialize
keyword argument. If the component is indexed, a single value can still be pro-
vided, in which case all entries in an indexed variable will be initialized to the same
value. As well, a dictionary can be passed in where the keys correspond to the valid
indices of the variable. Additionally, this argument can be passed a rule (function)
that accepts the variable indices and model and returns the value of that variable
element:

model.A = Set(initialize=[1,2,3])
def g(model, i):

return 3*i
model.m = Var(model.A, initialize=g)

print(value(model.m[1])) # 3
print(value(model.m[3])) # 9

4.4 Objectives 53

4.3.2 Working with Var Objects

When generating formatted output, or scripting advanced workflows, there are sev-
eral attributes and methods of Var that are commonly used. Consider the following
declarations:

model.A = Set(initialize=[1,2,3])
model.za = Var(initialize=9.5, within=NonNegativeReals)
model.zb = Var(model.A, initialize={1:1.5, 2:4.5, 3:5.5})
model.zc = Var(model.A, initialize=2.1)

The current value of the variable can be obtained with the value() function, and
the attributes lb and ub hold values for the lower and upper bounds on the variable,
respectively. These values may be inferred from the domain of the variable.

print(value(model.zb[2])) # 4.5
print(model.za.lb) # 0
print(model.za.ub) # None

The setlb and setub methods are used to set lower and upper bounds for a each
variable.

Variable values can be set using the Python assignment operator,
model.za = 8.5
model.zb[2] = 7.5

One can also call the set values method to set all the variable values from a
dictionary.

Var components can be fixed to specific values. If the fixed attribute is True,
then the variable has a fixed value that will not be altered by an optimizer. The fix
method is used to fix elements of a Var, and the unfix method is used to unfix
elements of a Var.

model.zb.fix(3.0)
print(model.zb[1].fixed) # True
print(model.zb[2].fixed) # True
model.zc[2].fix(3.0)
print(model.zc[1].fixed) # False
print(model.zc[2].fixed) # True

4.4 Objectives

An objective is a function that is either minimized or maximized by a solver. The
solver searches for values of the variables that result in the best possible value of the
objective function. The following sections describe the syntax for objective declar-
ing and working with objectives.

54 4 Pyomo Components

4.4.1 Objective Declarations

Most solvers can be applied to optimization models with a single objective. The
following code provides simple declaration of an Objective object:

model.a = Objective()

Named and un-named arguments are supported, and Table 4.3 provides a list of the
common arguments that can be passed when declaring the Objective component.

keyword description acceptable values

<un-named> reserved for specifying index sets any number of Pyomo Set objects or
Python lists

expr provides the expression that defines
the objective function

any valid Pyomo expression

rule provides the rule function that will be
called to provide the expression that
defines the objective function

a function that returns a Pyomo ex-
pression or Objective.Skip

sense determines if the objective is to be
minimized or maximized (default is
to minimize)

minimize or maximize

Table 4.3: Common Declaration Arguments for the Objective Component

The expr keyword can be used to specify the actual expression for the objective.
One can also use the rule keyword to specify a rule (Python function) that returns
an expression. A rule function provides control over how the objective is formed or
used to build up the expression. These are illustrated here:

model.x = Var([1,2], initialize=1.0)

model.b = Objective(expr=model.x[1] + 2*model.x[2])

def m_rule(model):
expr = model.x[1]
expr += 2*model.x[2]
return expr

model.c = Objective(rule=m_rule)

Some solvers can perform multi-objective optimization with two or more objec-
tives. Multiple objectives can be declared individually. As well, they can be indexed,
and defined using a rule, as shown here:

4.5 Constraints 55

A = [’Q’, ’R’, ’S’]
model.x = Var(A, initialize=1.0)
def d_rule(model, i):

return model.x[i]**2
model.d = Objective(A, rule=d_rule)

When the Objective object is declared as an indexed component, Pyomo iterates
over all elements of the index set during object construction, passing each set ele-
ment to the function given as the argument to the rule keyword. If multiple sets are
specified in an Objective declaration, then Pyomo iterates over the cross product
of all sets, providing an element for each set to the rule function.

In some contexts, it may be convenient to not define objectives for some index
values. If the construction rule returns Objective.Skip, then the objective is
ignored.

def e_rule(model, i):
if i == ’R’:

return Objective.Skip
return model.x[i]**2

model.e = Objective(A, rule=e_rule)

By default, the declaration of an Objective object indicates that the objective
is to be minimized. The sense option can also be used to indicate an objective that
is maximized using sense=maximize

4.4.2 Working with Objective Objects

The objective function contains a few attributes that may be useful for scripting or
debugging. The expr stores the expression for the objective. The sense attribute
indicates whether the objective is to minimize or maximize. The value function
and the () operator can be used to compute the value of the objective. These are
illustrated in the following example:

A = [’Q’, ’R’]
model.x = Var(A, initialize={’Q’:1.5, ’R’:2.5})
model.o = Objective(expr=model.x[’Q’] + 2*model.x[’R’])
print(model.o.expr) # x[Q] + 2*x[R]
print(model.o.sense) # minimize
print(value(model.o)) # 6.5

4.5 Constraints

A constraint defines one or more expressions that place limits on the feasible values
of variables. The declaration of constraint expressions is similar to the declaration
of objective function expressions. However, constraints differ from objectives in

56 4 Pyomo Components

that the expressions include relationships (equalities or inequalities). While objec-
tives can be indexed, this feature is infrequently used. In contrast, constraints are
commonly indexed, allowing for access to indexed parameters and variables when
constructing the constraint expression.

4.5.1 Constraint Declarations

The following code provides a simple declaration of a single, non-indexed
Constraint object:

model.x = Var([1,2], initialize=1.0)
model.diff = Constraint(expr=model.x[2]-model.x[1] <= 7.5)

Several named arguments are supported, and Table 4.4 provides a list of the common
arguments that can be passed when declaring the Constraint component.

The expression specified by the expr keyword can alternatively be generated
with a rule function. For example, the diff constraint can also be declared as
follows:

model.x = Var([1,2], initialize=1.0)
def diff_rule(model):

return model.x[2] - model.x[1] <= 7.5
model.diff = Constraint(rule=diff_rule)

keyword description acceptable values

<un-named> reserved for specifying index sets any number of Pyomo Set objects or
Python lists

expr provides the expression that defines
the constraint expressions

any valid Pyomo expression with a
relational operator, a 2-tuple, or a 3-
tuple

rule the rule function that will be called
to provide the expression that defines
the constraint function

a function that returns a Pyomo
expression with a relational op-
erator, a 2-tuple, a 3-tuple, or
Constraint.Skip

Table 4.4: Common Declaration Arguments for Constraint Component

Constraints can be indexed, and those indices can be used to refer to specific ele-
ments of indexed parameters and variables when constructing expressions. Consider
the following code fragment for constructing a model:

4.5 Constraints 57

N = [1,2,3]

a = {1:1, 2:3.1, 3:4.5}
b = {1:1, 2:2.9, 3:3.1}

model.y = Var(N, within=NonNegativeReals, initialize=0.0)

def CoverConstr_rule(model, i):
return a[i] * model.y[i] >= b[i]

model.CoverConstr = Constraint(N, rule=CoverConstr_rule)

Indexed constraints are specified in the same manner as indexed objectives. Py-
omo iterates over the cross product of all input sets, providing an index for each set
to the rule function. The CoverConstr constraint in this example implements the
following mathematical model:

aiyi ≥ bi ∀i ∈ {1,2,3} (4.1)

However, the specific model instance that is passed to the solver will include the
following explicit constraints,

y[1] ≥ 1
3.1 · y[2] ≥ 2.9
4.5 · y[3] ≥ 3.1

Three types of constraint expressions are allowed in Pyomo:

• inequality constraints have the form

expr1 ≤ expr2 or expr1 ≥ expr2

where expr1 and expr2 may be non-constant expressions. (Note that < and >
are not supported.)

• equality constraints have the form

expr1 = expr2

where expr1 and expr2 may be non-constant expressions.
• range constraints have the form

lower ≤ expr1 ≤ upper or upper ≥ expr1 ≥ lower

where lower and upper are constant expressions and expr1 is a non-constant
expression.

In some optimization models, a constraint may not be defined for all indices. For
example, particular indices may not be physically realizable. The rule function can
return Constraint.Skip (or

58 4 Pyomo Components

Constraint.NoConstraint) to indicate that no constraint is associated with
a particular index. For example, the consider the declaration of a notional task
scheduling constraint:

TimePeriods = [1,2,3,4,5]
LastTimePeriod = 5

model.StartTime = Var(TimePeriods, initialize=1.0)

def Pred_rule(model, t):
if t == LastTimePeriod:

return Constraint.Skip
else:

return model.StartTime[t] <= model.StartTime[t+1]

model.Pred = Constraint(TimePeriods, rule=Pred_rule)

The value Constraint.Skip indicates that no constraint is being generated,
and the corresponding index value is skipped. An alternative to this approach is to
construct a sparse index set that specifies only the valid indices in the constraint.
However, this may not be practical in complex models.

The value Constraint.Feasible indicates that the constraint generated for
the specified index is always feasible. Consequently, that constraint does not need to
be generated, and it is skipped. Similarly, the value Constraint.Infeasible
indicates that the constraint generated by the specified index is infeasible. This might
be used, for example, if a particular combination of parameter values produced an
invalid constraint. For this value, Pyomo raises an exception to inform the user,
because this typically indicates an error in the model.

4.5.2 Working with Constraint Objects

After a constraint is declared, the constraint expression is processed to identify the
elements of the logical tuple: (lower, body, upper), where the non-constant expres-
sions are pushed to the body. Hence, the lower and upper attributes are constant
expressions or None, and the body attribute contains a Pyomo expression. If a
constraint expression an equality, then the equality attribute is True, and the
lower and upper attributes have the same value.

The value of the constraint body can be evaluated using the value function.
Similarly, the lslack and uslack methods can be used to compute slack values
(difference between the current expression value and the lower or upper bound), as
shown in the following example:

4.6 Set Data 59

model = ConcreteModel()
model.x = Var(initialize=1.0)
model.y = Var(initialize=1.0)

model.c1 = Constraint(expr= model.y - model.x <= 7.5)
model.c2 = Constraint(expr=-2.5 <= model.y - model.x)
model.c3 = Constraint(expr=-3.0 <= model.y - model.x <= 7.0)

print(value(model.c1.body)) # 0.0

print(model.c1.lslack()) # -inf
print(model.c1.uslack()) # 7.5
print(model.c2.lslack()) # 2.5
print(model.c2.uslack()) # inf
print(model.c3.lslack()) # 3.0
print(model.c3.uslack()) # 7.0

4.6 Set Data

A set is a collection of data, possibly including numeric data (e.g., real or integer
values) as well as symbolic data (e.g., strings) that is typically used to specify the
valid indices for an indexed components. Several classes can be used to define sets
in Pyomo models:

Set A generic component for declaring sets
RangeSet A component that defines a range of numbers
SetOf A component that creates a set from external data without

copying the data

4.6.1 Set Declarations

The following code provides a simple declaration of a Set object:
model.A = Set()

Named and un-named arguments are supported, and Table 4.5 provides a list of the
common arguments that can be passed when declaring the Set component

An indexed set can also be specified by providing other sets or Python lists as
un-named arguments in the declaration, and multi-dimensional indexed sets can be
declared by including a list of sets as options to the Set object:

model.A = Set()
model.B = Set()
model.C = Set(model.A)
model.D = Set(model.A,model.B)

60 4 Pyomo Components

keyword description acceptable values

<un-named> reserved for specifying index sets any number of Pyomo Set objects or
Python lists

initialize provides initial values for the vari-
ables

a scalar value, Python dictionary, or
rule function

within
domain

specifies the valid domain or values
for a variable

a Pyomo Set object, Python list, or
rule function

ordered specifies whether or not order of the
set should be preserved

True/False

virtual specifies that a set does not contain
data explicitly (creates a set that is
typically used for validation only)

True/False

bounds provide lower and upper bounds for
the valid values in the set

a 2-tuple, a Python dictionary, or a
rule function

Table 4.5: Common Declaration Arguments for Set Component

Similarly, standard Python types can be used to define a set index:
model.E = Set([1,2,3])
f = set([1,2,3])
model.F = Set(f)

Set declarations can also use standard set operations to declare a set in a constructive
fashion:

model.A = Set()
model.B = Set()
model.G = model.A | model.B # set union
model.H = model.B & model.A # set intersection
model.I = model.A - model.B # set difference
model.J = model.A ˆ model.B # set exclusive-or

Also, set cross-products can be specified with the multiplication operator:
model.A = Set()
model.B = Set()
model.K = model.A * model.B

The initialize keyword can also be used to specify the elements in a set:
model.B = Set(initialize=[2,3,4])
model.C = Set(initialize=[(1,4),(9,16)])

A Python dictionary can also be used to specify the elements for each index of an
indexed set:

4.6 Set Data 61

F_init = {}
F_init[2] = [1,3,5]
F_init[3] = [2,4,6]
F_init[4] = [3,5,7]
model.F = Set([2,3,4],initialize=F_init)

and the initialize keyword can also be used to specify a rule function that
provides elements for an indexed set. The function accepts the indices and model
and returns the set for that set index:

def J_init(model, i, j):
return range(0,i*j)

model.J = Set(model.B,model.B, initialize=J_init)

The previous examples illustrate how data can be specified or dynamically gener-
ated to initialize a set. However, there are some contexts where it is simpler to spec-
ify the set elements that should be omitted. The filter keyword can be used to
specify a function that returns True when an element belongs in a set, and False
otherwise. For example:

model.P = Set(initialize=[1,2,3,5,7])
def filter_rule(model, x):

return x not in model.P
model.Q = Set(initialize=range(1,10), filter=filter_rule)

Here, set P contains prime values, and set Q is the set of all numbers except for the
members of P.

After an indexed set is constructed in a concrete model, sets can be added for
specific indices using the Python equal operator:

model.R = Set([1,2,3])
model.R[1] = [1]
model.R[2] = [1,2]

Validation of set data is supported in two different ways. First, a superset can be
specified with the within or domain keyword:

model.B = Set(within=model.A)

When an element is added to the set B, it is checked to confirm that it also belongs
to A. This ensures that B is a subset of A.

Validation of set data can also be performed by passing a rule to the validate
keyword argument. The rule function should return True if the element that is
passed in belongs in this set, and False otherwise (Pyomo will throw an excep-
tion). For example, the following C validate function mimics the within key-
word argument:

def C_validate(model, value):
return value in model.A

model.C = Set(validate=C_validate)

Finally, note that if both the within and validate keyword arguments are
specified, then the logic specified by both are applied to validate set elements.

62 4 Pyomo Components

By default, sets are unordered. That is, the internal representation may place the
set elements in any order. In some cases, we need to know and preserve the order
in which set elements are declared. We can declare a set to be ordered with the
ordered keyword:

model.A = Set(ordered=True)

Sets may contain data elements that are either singletons or k-tuples. The dimen
keyword is used to specify the expected dimension of the data. The default value is
one, indicating that the set will contain singleton data. In some cases, the appropriate
value of the dimension can be determined from other keyword values, but in general
the user is required to specify this keyword for tuple set data.

Pyomo set components can contain concrete data; however, they can also be vir-
tual sets. A virtual set does not contain data explicitly, but it supports operations like
set iteration and/or set membership validation. Predefined virtual sets are shown in
Table 4.2. Virtual sets can be declared by setting the virtual keyword argument
to True. Virtual sets are typically used for validation (i.e., as arguments to the
within or validate keyword of another set).

Ordered sets may have first and last values. The bounds option can be used to
specify a 2-tuple that defines upper and lower bounds for a set. This option may be
inferred from the within option, when that set is ordered.

The RangeSet component defines an ordered virtual set that represents a se-
quence of integer or floating point values. This sequence is defined by a start value,
a final value, and a step size. If a RangeSet is defined with a single argument, then
the argument defines the final value. The start value defaults to 1 and the step size
defaults to 1. For example, the following defines a sequence of integers from 1 to
10:

model.A = RangeSet(10)

If a RangeSet is defined with two arguments, then the first is the start value
and the second is the final value. For example, the following defines a sequence of
integers from 5 to 10:

model.C = RangeSet(5,10)

Finally, if a RangeSet is defined with three arguments, then they are the start
value, final value and step size respectively. For example, the following defines a
sequence of floating point values from 2.5 to 10.0 with step 1.5:

model.D = RangeSet(2.5,11,1.5)

4.6 Set Data 63

4.6.2 Working with Set Objects

The len() function returns the number of elements in the set:
model.A = Set(initialize=[1,2,3])

print(len(model.A)) # 3

The elements can be directly accessed with the data() method, which returns the
underlying set data. Note that this will be a Python set object for simple ordered
or unordered sets. For indexed sets, this returns a dictionary of set objects:

model.A = Set(initialize=[1,2,3])
model.B = Set(initialize=[3, 2, 1], ordered=True)
model.C = Set(model.A, initialize={1:[1], 2:[1,2]})

print(type(model.A.data()) is set) # True
print(type(model.B.data()) is set) # True
print(type(model.C.data()) is dict) # True
print(sorted(model.A.data())) # [1,2,3]
for index in sorted(model.C.data().keys()):
print(sorted(model.C.data()[index]))

[1]
[1,2]

The clear() method is used to clear the data in a Pyomo set. The discard()
and remove() methods are used to remove a single element from a set; the
discard() method ignores elements that are not in the set, while the remove()
method throws an exception for missing elements.

Set comparison and membership tests are supported with a variety of Python
special methods:

model.A = Set(initialize=[1,2,3])

Test is an element is in the set
print(1 in model.A) # True

Test if sets are equal
print([1,2] == model.A) # False

Test if sets are not equal
print([1,2] != model.A) # True

Test if a set is a subset of or equal to the set
print([1,2] <= model.A) # True

Test if a set is a subset of the set
print([1,2] < model.A) # True

Test if a set is a superset of the set
print([1,2,3] > model.A) # False

Test if a set is a superset of the set
print([1,2,3] >= model.A) # True

64 4 Pyomo Components

Set iteration also works as expected for simple and indexed sets:
model.A = Set(initialize=[1,2,3])
model.C = Set(model.A, initialize={1:[1], 2:[1,2]})

print(sorted(e for e in model.A)) # [1,2,3]
for index in model.C:

print(sorted(e for e in model.C[index]))
[1]
[1,2]

Ordered sets include a variety of methods that reflect the ordering in the set:
model.A = Set(initialize=[3,2,1], ordered=True)

print(model.A.first()) # 3
print(model.A.last()) # 1
print(model.A.next(2)) # 1
print(model.A.prev(2)) # 3
print(model.A.nextw(1)) # 3
print(model.A.prevw(3)) # 1

The first() and last() methods respectively return the values of the first and
last elements in an ordered set. The next() method takes a value and returns the
next value in the set. Similarly, the prev() method returns the previous value. The
nextw() and prevw() methods operate similarly, except that they wrap around
the ends of the set. In this example, the value of nextw(1) is 3 because 1 is the
last element of the set, and 3 is the next element if the set indices wrap around. The
ord() method can be used to find the position index of an element in an ordered
set, and the [] operator can be used to access an element given a position index:

model.A = Set(initialize=[3,2,1], ordered=True)

print(model.A.ord(3)) # 1
print(model.A.ord(1)) # 3
print(model.A[1]) # 3
print(model.A[3]) # 1

Note that position indices start at one. The order of the set is determined by the
sequence of the data provided when it is instantiated.

4.7 Parameter Data

A parameter is a numerical or symbolic value that is used to formulate constraints
and objectives in a model. Pyomo parameters are managed with the Param class,
which can denote a single value, an array of values or a multi-dimensional array
of values. An unindexed Param component looks a lot like a scalar value, and an
indexed Param component looks a lot like a Python dictionary of values. How-
ever, the Param component supports advanced features like mutability and sparse
representations with default values.

4.7 Parameter Data 65

4.7.1 Param Declarations

The following code provides a simple declaration of a Param object:
model.Z = Param()

Named and un-named arguments are supported, and Table 4.6 provides a list of the
common arguments that can be passed when declaring the Param component.

keyword description acceptable values

<un-named> reserved for specifying index sets any number of Pyomo Set objects or
Python lists

initialize provides initial value(s) for the pa-
rameter

a scalar value, Python dictionary, or
rule function

default provides default value(s) to use for
the parameter if no value has been set

a scalar value, Python dictionary, or
rule function

validate specifies a function that is called to
determine if a particular value is valid
for the parameter

a function that returns True or False
given a particular value

mutable specifies whether or not the parame-
ter values may change between calls
to a solver

True/False

Table 4.6: Common Declaration Arguments for Param Component

An indexed parameter can be specified by providing sets as unnamed arguments
to the Param declaration:

model.A = Set(initialize=[1,2,3])
model.B = Set()
model.U = Param(model.B)
model.C = Set()
model.T = Param(model.A, model.C)

The initialize keyword can be used to specify the value of a parameter:
model.Z = Param(initialize=32)

The initialize keyword also accepts a rule function that returns the initial value
for a scalar parameter or a value for a specified index of an indexed parameter.

def X_init(model, i, j):
return i*j

model.X = Param(model.A, model.A, initialize=X_init)

If ordered sets are used to define the index for an indexed parameter, then the ini-
tialization function can reference previously defined parameter values:

66 4 Pyomo Components

def XX_init(model, i, j):
if i==1 or j==1:

return i*j
return i*j + model.XX[i-1,j-1]

model.XX = Param(model.A, model.A, initialize=XX_init)

The default option can be used to specify parameter values for all valid in-
dices that have not been explicitly initialized. For example, we can define an indexed
parameter that represents a 3×3 diagonal matrix as follows:

u={}
u[1,1] = 10
u[2,2] = 20
u[3,3] = 30
model.U = Param(model.A, model.A, initialize=u, default=0)

A Param object can contain any value: string, floating point, etc. The default
domain for parameters is Any, so by default no domain validation is performed.
However, it is often valuable to specify the space of valid parameter values to pro-
vide checking of the input data. Similar to the Set component, there are two ways
to validate parameter values. First, the domain of feasible parameter values can be
specified using the within option:

model.Z = Param(within=Reals)

Validation of parameter data can also be performed with the validate option,
which specifies a function that returns True if a parameter value is valid and
False if it is not (Pyomo will throw an exception). The following example uses
the validate option to mimic the behavior of the within option:

def Y_validate(model, value):
return value in Reals

model.Y = Param(validate=Y_validate)

Validation of indexed parameters is performed similarly. The validate op-
tion specifies a function whose arguments are the model, parameter value, and the
parameter indices:

model.A = Set(initialize=[1,2,3])
def X_validate(model, value, i):

return value > i
model.X = Param(model.A, validate=X_validate)

If both the within and validate options are specified, then the logic for both
of these options are applied to validate parameter values.

The Param component typically represents constant values that can be used in
Pyomo models; however, mutability is also supported. In the following example,
Pyomo generates the expression for the objective in this model with the form:

x1 +4x2 +9x3.

Specifically, Pyomo has treated parameter values as fixed constants, and its expres-
sions simply contain the numeric constants.

4.7 Parameter Data 67

model = ConcreteModel()
p = {1:1, 2:4, 3:9}

model.A = Set(initialize=[1,2,3])
model.p = Param(model.A, initialize=p)
model.x = Var(model.A, within=NonNegativeReals)

model.o = Objective(expr=sum(model.p[i]*model.x[i] for i \
in model.A))

Note that this “conversion” happens as soon as the expression is first created. The
fact that these values come from a Param component is lost, and we only have
the numerical values (done for efficiency). Consequently, these values cannot be
changed once the expression is created.

However, this behavior is different if the mutable option is specified while
constructing the model. If this option is True, then the parameter values are not
treated as constants. Consider the previous example again where the p parameter is
now mutable:

model = ConcreteModel()
p = {1:1, 2:4, 3:9}

model.A = Set(initialize=[1,2,3])
model.p = Param(model.A, initialize=p, mutable=True)
model.x = Var(model.A, within=NonNegativeReals)

model.o = Objective(expr=summation(model.p, model.x))

model.p[2] = 4.2
model.p[3] = 3.14

When Pyomo generates the expression for the objective in this model, it keeps
knowledge of the Param component and now has the form:

p1x1 + p2x2 + p3x3,

where the values pi are Param objects with references to the parameter values.
Here, Pyomo treats the parameter values as mutable values that may later be changed
by the user. In this example, the parameter values are changed after the objective
expression is defined, and the resulting objective is

x1 +4.2x2 +3.14x3.

The parameters are only replaced with their numerical values when calling the
solver. Therefore, their values can be changed between consecutive calls to a solver.

Mutable parameters require some additional overhead for memory and they re-
quire additional processing when translating Pyomo expressions into a form that a
solver understands. Consequently, parameters are immutable by default.

68 4 Pyomo Components

4.7.2 Working with Param Objects

Pyomo assumes that parameter values are specified with a sparse representation. For
example, the Param object T declares a parameter indexed over sets A and B:

model.T = Param(model.A, model.B)

However, not all of these values are required to be defined in a model. For example:
model.B = Set(initialize=[1,2,3])
w={}
w[1] = 10
w[3] = 30
model.W = Param(model.B, initialize=w)

Parameter W is defined for indices 1 and 3, but the index set B includes 1, 2, and 3.
If W[2] is accessed, an error occurs and a Python exception is thrown.

As mentioned earlier, a default value can also be provided with the default
keyword argument. If a default value is provided, and a model tries to access a
value that has not been initialized, the default value is used (instead of throwing an
exception). Note that the parameter data is stored with a sparse representation, even
if the default value is specified. This is supported for memory efficiency. It provides
a convenient way for the modeler to reference sparse values without adopting a
specialized data structure.

Because of this sparse representation, several methods that consider the valid
keys of an indexed parameter require specialized behavior. Let the valid index set
refer to the complete list of all valid indices (whether initialized or not), and let
the effective index set denote only the set of initialized key values in an indexed
component. If no default value is declared, then the the len function returns the
size of the effective index set, and the in operator tests if a specified value is in
the effective index set. Iteration is supported over values in the effective index set,
and the Python [] operator can be used to access individual elements (which is the
parameter value in this example).

If a default value is declared, then all indices are equally valid in the model,
whether explicitly indexed or not. Therefore, the len() function returns the size
of the full index set, iteration and the in operator consider the full index set. Thus,
when a default value is specified, the parameter appears to be densely populated
with values, even if the underlying data structure is kept sparse for efficiency. This
is illustrated in the following example:

model = ConcreteModel()
model.p = Param([1,2,3], initialize={1:1.42, 3:3.14})
model.q = Param([1,2,3], initialize={1:1.42, 3:3.14}, \

default=0)

Demonstrating the len() function
print(len(model.p)) # 2
print(len(model.q)) # 3

4.8 Named Expressions 69

Demonstrating the ’in’ operator (checks against \
component keys)

print(2 in model.p) # False
print(2 in model.q) # True

Demonstrating iteration over component keys
print([key for key in model.p]) # [1,3]
print([key for key in model.q]) # [1,2,3]

The methods sparse keys(), sparse values(), sparse items(),
sparse iterkeys(), sparse itervalues(), and
sparse iteritems() define sparse versions of the corresponding methods that
are defined in theIndexedComponent class. These methods return values only
for the defined parameter values, whether or not a default value is specified.

4.8 Named Expressions

Pyomo expressions are mathematical statements that contain numbers, parameters,
and variables combined using operators such as +,-,*,/, etc. Such expressions form
the basis of the algebraic representation of a model, and are stored inside constraint
and objective components on that model.

The Expression component provides a mechanism for storing a Pyomo ex-
pression on a model so that the expression can be re-used in multiple contexts, such
as a common sub-expression in one or more constraints, without the overhead of
regenerating the expression each time. In addition, the Pyomo expression stored
by the Expression component can be changed at a later time, thereby updating
any constraint or objective expressions that reference it. This provides a powerful
approach for modifying a model between calls to a solver.

The following sections describe the syntax for declaring and working with named
expressions.

4.8.1 Expression Declarations

The following code provides a simple declaration of a single, non-indexed
Expression object:

model.e = Expression()

Named and un-named arguments are supported, and Table 4.7 provides a list of the
common arguments that can be passed when declaring the Expression compo-
nent.

The expr or rule keywords can be used to initialize a named expression when
it is declared, as shown in the following example:

70 4 Pyomo Components

model.x = Var()
model.e1 = Expression(expr=model.x + 1)
def e2_rule(model):

return model.x + 2
model.e2 = Expression(rule=e2_rule)

keyword description acceptable values

<un-named> reserved for specifying index sets any number of Pyomo Set objects or
Python lists

expr provides the expression to store any valid Pyomo expression

rule the rule function that will be called to
provide the expression to store

a function that returns a Pyomo ex-
pression or Expression.Skip

Table 4.7: Common Declaration Arguments for Expression Component

As with the other core modeling components, the Expression component
can be indexed by declaring it with one or more arguments that represent indexing
sets. The following example declares an indexed Expression component over all
members of the index set except for the first. Indices that should be left out of the in-
dexed Expression container are signified by returning the Expression.Skip
attribute from the initialization rule.

N = [1,2,3]
model.x = Var(N)
def e_rule(model, i):

if i == 1:
return Expression.Skip

else:
return model.x[i]**2

model.e = Expression(N, rule=e_rule)

4.8.2 Working with Expression Objects

A simple use for the Expression component declares a single expression and
uses it inside an objective and a constraint declaration:

model.x = Var()
model.e = Expression(expr=(model.x - 1.0)**2)
model.o = Objective(expr=0.1*model.e + model.x)
model.c = Constraint(expr=model.e <= 1.0)

The value of the named expression can be computed using the value function.
Additionally, the expression stored in the named Expression component can be up-

4.9 Suffix Components 71

dated. As the following example shows, updating the named expression has the
effect of updating the objective and constraint expressions where it is used:

model.x.set_value(2.0)
print(value(model.e)) # 1.0
print(value(model.o)) # 2.1
print(value(model.c.body)) # 1.0

model.e.set_value((model.x - 2.0)**2)
print(value(model.e)) # 0.0
print(value(model.o)) # 2.0
print(value(model.c.body)) # 0.0

The Expression component does not require an expression when it is declared
on a model, but it must be assigned one before the model is solved if the named
expression is used in any active objectives or constraints. Furthermore, named ex-
pressions that are used in objectives or constraints should not store relational Pyomo
expressions, that is, expressions using one or more of the operators <=, <, >=, >,
and ==.

4.9 Suffix Components

Suffixes provide a mechanism for annotating a model with auxiliary data that is not
strictly related to the model declaration and structure. Suffixes are commonly used
by solver plugins to store extra information about the solution of a model. More
generally, suffixes can be used to

• import information from a solver about the solution to a mathematical program
(e.g., constraint duals, variable reduced costs, basis information),

• export information to a solver or algorithm to configure the solution process
(e.g., warm-starting information, variable branching priorities), and

• tag model components with local data for later use in advanced scripting algo-
rithms.

This functionality is made available to the modeler through the Suffix component
class, which provides an interface for annotating Pyomo modeling components with
additional data.

4.9.1 Suffix Declarations

The following code provides a simple declaration of a suffix labeled foo:
model.foo = Suffix()

Named and un-named arguments are supported, and Table 4.8 provides a list of the
common arguments that can be passed when declaring the Suffix component

72 4 Pyomo Components

keyword description acceptable values

direction specifies if a suffix is an input to or an
output from a solver

Suffix.LOCAL,
Suffix.IMPORT,
Suffix.EXPORT,
Suffix.IMPORT EXPORT (more
details given below)

datatype specifies the particular type of data
being stored in the suffix

Suffix.FLOAT, Suffix.INT,
None (more details given below

initialize provides initial values for the suffix a rule function

Table 4.8: Common Declaration Arguments for Suffix Component

The Suffix component is a not an indexed component, and hence it cannot be
declared with un-named positional arguments. The direction keyword argument
is used to specify the information flow for a suffix when interfacing with a solver.
This argument can be one of four possible values:

• Suffix.LOCAL: Suffix data is local to the model. It is not imported or ex-
ported by solver plugins (default).

• Suffix.IMPORT: Suffix data will be imported from solvers to the model by
solver plugins.

• Suffix.EXPORT: Suffix data will be exported from the model to the solver
by the plugins.

• Suffix.IMPORT EXPORT: Suffix data is both imported and exported by
solver plugins.

Not all solver plugins are guaranteed to manage suffix information flow, but the user
controls this information flow by configuring suffix components.

The datatype keyword argument specifies the type of data that will be held in
the suffix. This argument can be one of three possible values:

• Suffix.FLOAT: floating point data (default).
• Suffix.INT: integer data.
• None: any type of data.

This argument may be optional for a solver interface, but exporting suffix data with
solvers that use Pyomo’s nl file interface requires that all active export suffixes have
a strict datatype (i.e., the datatype keyword cannot be None).

The following example illustrates various suffix declarations:
Export integer data
model.priority = Suffix(direction=Suffix.EXPORT,

datatype=Suffix.INT)

Export and import floating point data
model.dual = Suffix(direction=Suffix.IMPORT_EXPORT)

4.9 Suffix Components 73

Suffixes are not guaranteed to be compatible with all solver plugins in Pyomo.
Whether a given suffix is acceptable or not depends on both the solver and solver
interface being used. In some cases, a solver plugin will raise an exception if it en-
counters a suffix type that it does not handle, but this is not true in every situation.
For example, the nl file interface is generic to all AMPL-compatible solvers, so
there is no way to validate that a suffix of a given name, direction, and datatype
is appropriate for a solver. One should be careful in verifying that suffix declara-
tions are being handled as expected when switching to a different solver or solver
interface.

The initialize keyword argument can be used to define suffix values. This
argument specifies a function that is executed when the model is constructed. This
function returns a list or iterable of (component, value) tuples.

model = AbstractModel()
model.x = Var()
model.c = Constraint(expr=model.x >= 1)

def foo_rule(m):
return ((m.x, 2.0), (m.c, 3.0))

model.foo = Suffix(initialize=foo_rule)

4.9.2 Working with Suffixes

Consider the following example:
model = ConcreteModel()
model.x = Var()
model.y = Var([1,2,3], dense=True)
model.foo = Suffix()

This examples includes two variable components (indexed and non-indexed) along
with a suffix component. Conceptually, the declaration of the suffix foo allows the
association of foo with each component in the model. For example:

Assign the value 1.0 to suffix ’foo’ for model.x
model.x.set_suffix_value(’foo’, 1.0)

Assign the value 2.0 to suffix model.foo for model.x
model.x.set_suffix_value(model.foo, 2.0)

Get the value of suffix ’foo’ for model.x
print(model.x.get_suffix_value(’foo’)) # 2.0

Suffix values can be assigned with set suffix value and they can be accessed
with get suffix value. This example illustrates two ways of specifying the
same suffix: with a name and with a suffix component object.

Suffix values for indexed components can also be assigned with
set suffix value:

74 4 Pyomo Components

Assign the value 3.0 to suffix model.foo for model.y
model.y.set_suffix_value(model.foo, 3.0)

Assign the value 4.0 to suffix model.foo for model.y[2]
model.y[2].set_suffix_value(model.foo, 4.0)

Get the value of suffix ’foo’ for model.y
print(model.y.get_suffix_value(model.foo)) # None
print(model.y[1].get_suffix_value(model.foo)) # 3.0
print(model.y[2].get_suffix_value(model.foo)) # 4.0
print(model.y[3].get_suffix_value(model.foo)) # 3.0

This example illustrates how set suffix value is used to set the value for an
indexed component and a single component data object. When
set suffix value is called for an indexed component, by default it sets suf-
fix values for all elements or indices of the component, rather than the component
itself. Because of this, when we try to retrieve the suffix value for the model.y
component, we find that is is None.

Suffix values can also be cleared, which is equivalent to setting the value None:
model.y.clear_suffix_value(model.foo, expand=False)
model.y[3].clear_suffix_value(model.foo)

print(model.y.get_suffix_value(model.foo)) # None
print(model.y[1].get_suffix_value(model.foo)) # 3.0
print(model.y[2].get_suffix_value(model.foo)) # 4.0
print(model.y[3].get_suffix_value(model.foo)) # None

4.10 Build Components

When solving a model with our own Python script (see Chapter 14), one can in-
sert Python code anywhere in the process. One can, for example, fix a particular
combination of variables, print the value of a parameter, or throw an exception if a
particular combination of parameter values is not valid. However, when building an
AbstractModel and solving the problem with the pyomo command, one does
not have control over the workflow of the solution process. Fortunately, Pyomo sup-
ports a set of components that allow for execution of Python code during the build
process.

The BuildAction component can be defined in the model to inject actions
(defined through Python code) into the model construction process. Similarly, the
BuildCheck component is used to perform a user-defined test (again, through
Python code) during the model construction process and halt construction if the
test fails. These components are added to a model in the same manner as other
components, but their role is to allow a user to insert scripting-like code into the
model construction process.

Consider the following abstract model (defined in buildactions.py) that

4.10 Build Components 75

illustrates the use of BuildAction and BuildCheck components to define error
checks and diagnostic output based on our warehouse location example defined in
Sections 3.2 and 3.3.7.

buildactions.py: Warehouse location problem showing \
build actions

from pyomo.environ import *

model = AbstractModel()

model.N = Set() # Set of warehouses
model.M = Set() # Set of customers
model.d = Param(model.N,model.M)
model.P = Param()

model.x = Var(model.N, model.M, bounds=(0,1))
model.y = Var(model.N, within=Binary)

def checkPN_rule(model):
return model.P <= len(model.N)

model.checkPN = BuildCheck(rule=checkPN_rule)

def obj_rule(model):
return sum(model.d[n,m]*model.x[n,m] for n in model.N \

for m in model.M)
model.obj = Objective(rule=obj_rule)

def one_per_cust_rule(model, m):
return sum(model.x[n,m] for n in model.N) == 1

model.one_per_cust = Constraint(model.M, \
rule=one_per_cust_rule)

def warehouse_active_rule(model, n, m):
return model.x[n,m] <= model.y[n]

model.warehouse_active = Constraint(model.N, model.M, \
rule=warehouse_active_rule)

def num_warehouses_rule(model):
return sum(model.y[n] for n in model.N) <= model.P

model.num_warehouses = Constraint(rule=num_warehouses_rule)

def printM_rule(model):
model.M.pprint()

model.printM = BuildAction(rule=printM_rule)

In this example, we have added a BuildCheck component with the rule
CheckPN rule. This rule will check to make sure that the total number of ware-
houses we can place is not more than the number of available warehouse locations.
We have also added a BuildAction component with the rule printM rule that
prints the set of customer locations.

We created a .dat file where the parameter P is larger than the available number
of warehouse locations (so it would fail the CheckPN rule build check:

76 4 Pyomo Components

buildactions_fails.dat: Pyomo format data file for the \
warehouse location problem

Note: parameter P is larger than the number of warehouse \
locations

set N := Harlingen Memphis Ashland ;
set M := NYC LA Chicago Houston;

param d :=
Harlingen NYC 1956
Harlingen LA 1606
Harlingen Chicago 1410
Harlingen Houston 330
Memphis NYC 1096
Memphis LA 1792
Memphis Chicago 531
Memphis Houston 567
Ashland NYC 485
Ashland LA 2322
Ashland Chicago 324
Ashland Houston 1236

;

param P := 4 ;

Solving this with the pyomo command:
pyomo solve --solver=glpk buildactions.py \

buildactions_fails.dat

gives us output similar to the following:
[0.00] Setting up Pyomo environment
[0.00] Applying Pyomo preprocessing actions
[0.00] Creating model
ERROR: Constructing component ’checkPN’ from data=None

failed:
ValueError: BuildCheck ’checkPN’ identified error

[0.01] Pyomo Finished
ERROR: Unexpected exception while running model:

BuildCheck ’checkPN’ identified error

As with other components, the BuildAction and BuildCheck components
can be indexed, which allows actions and checks to be customized based on specific
data.

4.11 Other Modeling Components

This chapter presented details for some of the most common modeling components
supported by Pyomo. There are other modeling components that were not thor-
oughly discussed in this chapter. These include:

4.11 Other Modeling Components 77

Block: The Block component provides a mechanism to declare models with re-
peated or nested structure (e.g., separate Block objects may exist on a model to
represent different time points in a multi-period optimization). A Block con-
sists of a collection of Pyomo modeling components. More discussion of blocks
is provided in Chapter 8.

Model: The Model component provides a container for grouping Pyomo mod-
eling components to form the definition of an optimization problem. Pyomo
supports both abstract and concrete modeling representations. While “model”
objects were widely used in this book (they are required to formulate and solve
an optimization problem in Pyomo), we have not discussed the fact they are
components themselves. In fact, they inherit from the Block component.

Complementarity: This component is used to define complementarity condi-
tions in a mathematical program with equilibrium constraints (MPEC). Several
forms of the complementarity conditions are supported. This component is doc-
umented further in Chapter 12.

Disjunct: This component supports the Generalized Disjunctive Programming
(GDP) capability within Pyomo. A Disjunct component is a container for
an indicator variable and a set of constraints that should be active when that
indicator variable is True. This component is documented further in Chapter 9.

Disjunction: This component supports the Generalized Disjunctive Program-
ming (GDP) capability within Pyomo. A Disjunction component contains
a set of Disjunct objects connected by a logical “OR” operator. This compo-
nent is documented further in Chapter 9.

SubModel: A SubModel component is used as part of the bilevel optimization
capability within Pyomo. It is used to define a subproblem for the lower-level
decisions in a bilevel programming problem. This component is documented
further in Chapter 13.

Piecewise: This component supports piecewise modeling of general functions.
It supports several different transformations to produce mixed-integer represen-
tations for the piecewise functions. More documentation on this component can
be found at the Pyomo website.

SOSConstraint: Special ordered sets (SOS) can be defined in Pyomo through
the SOSConstraint component. Pyomo supports special ordered sets of type
1 and 2 (SOS1 and SOS2). More documentation on this component can be
found at the Pyomo website.

Chapter 5

The Pyomo Command

Abstract This chapter describes Pyomo’s command-line interface, which includes
a variety of subcommands that support common workflows and provide information
about Pyomo and its installation.

5.1 Overview

The Pyomo software includes the pyomo command, which was introduced in Sec-
tion 3.4.1. The pyomo command provides a collection of subcommands that support
common workflows and provide information about Pyomo and its installation. The
following subcommands are supported in Pyomo 5.1:

check
This subcommand checks a model for errors. This is particularly useful for eval-
uating the logic of rules in abstract models.

convert
This subcommand is used to convert a Pyomo model into another format, such
as an lp or nl file.

help
Print information about the configuration and installation of Pyomo. For ex-
ample, the -s option is particularly useful:

pyomo help -s

This command interrogates the local environment to provide information about
available solvers.

install-extras
Install “extra” packages that Pyomo can leverage. For example, this subcom-
mand installs pyyaml, which adds YAML support within Pyomo. Also, this
subcommand installs suds, which is needed to launch solvers on NEOS.

79© Springer International Publishing AG 2017
W.E. Hart et al., Pyomo — Optimization Modeling in Python, Springer Optimization
and Its Applications 67, DOI 10.1007/978-3-319-58821-6_5

80 5 The Pyomo Command

run
Execute a command from the Pyomo bin (or Scripts) directory. For example,
this provides a handy mechanism for launching Python with Pyomo installed:

pyomo run python

solve
Construct and optimize a model.

test-solvers
Execute a variety of tests to verify solver capabilities.

The following sections illustrate the use of the check, convert, help and
solve subcommands, which can be customized with a variety of options.

5.2 The check Subcommand

Pyomo models are regular Python files that define a Pyomo model. Consequently,
there are many possible ways that a user might either fail to correctly define a model
or define a model in a manner that is not supported by Pyomo. An example of the
former is to incorrectly refer to a model variable:

bad1.py
from pyomo.environ import *

model = AbstractModel()
model.A = Set(initialize=[1,2,3])
model.x = Var(model.A)

def x_rule(M):
return sum(M.x[i] for i in model.A) >= 0

model.c = Constraint(rule=x_rule)

instance = model.create_instance()
instance.pprint()

The rule function references the variable model, but the model instance passed into
the rule is M. Consequently, the attempt to iterate over the set model.A generates
an error, because the model object has not been initialized with data.

An example of the latter problem is illustrated by the following example:
bad2.py
from pyomo.environ import *

model = AbstractModel()
model.q = Param(initialize=0, mutable=True)
model.A = Set(initialize=[1,2,3])
model.x = Var(model.A)

def x_rule(model):
if model.q > 0:

return sum(model.x[i] for i in model.A) >= 1

5.3 The convert Subcommand 81

else:
return sum(model.x[i] for i in model.A) >= 0

model.c = Constraint(rule=x_rule)

instance = model.create_instance()
instance.pprint()

Here, a mutable parameter q is used in a conditional expression. Since q is mutable,
Pyomo does not treat it as a constant value, but rather it generates a Pyomo expres-
sion object. But this creates an error because Pyomo cannot implicitly evaluate this
expression.

Both of these examples illustrate how subtle errors can arise in Pyomo models.
The check subcommand provides a facility for automatically scanning a model file
for these types of errors. For example, the command

pyomo check bad1.py

generates the following output:
[model::ModelAccess] bad1.py:9: Expression ’model.A’ may

access a model variable that is outside of the function
scope

[model::ModelArgument] bad1.py:8: Model variable ’model’ is
used in the rule, but this variable is not first
argument in the rule argument list

Pyomo supports a variety of checkers, each of which prints a warning with an asso-
ciated line number and other context information. The command

pyomo help --check

describes the checkers that are installed with Pyomo.

5.3 The convert Subcommand

Many optimizers supported by Pyomo read a a temporary file that Pyomo generates
in a standard problem format. For example, the NL format that is recognized by
solvers used with the AMPL modeling tool, and the LP file format that is used by a
variety of commercial and open source integer programming solvers.

It is often useful to generate these problem files directly, both to diagnose issues
with a model as well as to directly manage the execution of a solver. The convert
subcommand can be used to convert a Pyomo model into a standard file format. For
example, consider the command:

pyomo convert --format=lp concrete1.py

This command converts the model in concrete1.py into an LP file format,
which is stored in the file unknown.lp:

82 5 The Pyomo Command

[0.00] Setting up Pyomo environment
[0.00] Applying Pyomo preprocessing actions
[0.00] Creating model
Model written to file ’unknown.lp’
[0.00] Pyomo Finished

The --output option can also be used to specify a filename, for which the file-
name suffix specifies the file format. For example, the command

pyomo convert --output=concrete1.lp concrete1.py

creates the file concrete1.lp, which represents the model from
concrete1.py in the LP file format.

The command
pyomo help -w

summarizes the file formats supported by Pyomo.

5.4 The help Subcommand

The help subcommand prints information about Pyomo’s capabilities, including
information about installed plugins as well as available solvers. The -h option prints
information about the different information that is available, including:

--checkers
This prints the model checkers that are installed with Pyomo.

--commands, -c
This prints the commands that are installed with Pyomo. Although much of
Pyomo’s functionality can be accessed through the pyomo command, some
functionality is developed separately. Currently, most of commands supported
by Pyomo relate to the functionality in pyomo.pysp.

--components
This prints the modeling components and virtual sets that are available in Py-
omo.

--data-managers, -d
This prints the data interfaces that are supported by the DataPortal class.
Data can also be imported through these interfaces using Pyomo data files.

--info, -i
This prints information about the user’s PATH environment and Python instal-
lation. This command helps diagnose issues with the execution of Pyomo.

--solvers, -s
This prints information about solvers and solver managers that can be used
the optimize Pyomo models. Note that information about NEOS solvers will
be included if Pyomo can connect to the NEOS server.

--transformations, -t
This prints the model transformations that are supported by Pyomo.

5.5 The solve Subcommand 83

--writers, -w
This prints the model writers that are supported by Pyomo. Specifically, this
summarizes the different file formats that a Pyomo model can be converted to.

5.5 The solve Subcommand

The solve subcommand automatically executes the following steps:

1. Construct a model.
2. Read the instance data (if applicable).
3. Generate a model instance (if the model is abstract).
4. Apply simple preprocessors to the model instance.
5. Apply a solver to the model instance.
6. Load the results into the model instance.
7. Display the solver results.

The model construction step requires a Pyomo model file, which is a Python file that
defines a Pyomo model object. Thus, the solve subcommand can be viewed as a
generic script for analyzing a model defined by a Pyomo model file.

For example, the following command-line optimizes a model defined in
wl concrete.py defined in Section 3.3.5 using the glpk solver:

pyomo solve --solver=glpk wl_concrete.py

Similarly, the following command-line optimizes a model defined in
wl abstract.py using data in wl data.dat, also using glpk:

pyomo solve --solver=glpk wl_abstract.py wl_data.dat

The solve subcommand has a variety of optional command-line arguments that are
used to customize the optimization process; documentation of the various available
options is available by specifying the --help option.

However, the solve subcommand can also be executed with a YAML or JSON
configuration file1, which eliminates the need to specify command-line options.
Consider the following configuration file:

concrete1.yaml
model:
filename: concrete1.py

solvers:
- solver name: glpk

This configuration file can be used to configure the executions of the pyomo sub-
command as follows:

1 YAML and JSON are data serialization standards. JSON is supported natively in Python, and
information about JSON is available at www.json.org. YAML configuration files are supported
if the PyYAML package is installed, and information about YAML is available at www.yaml.org.

http://www.json.org
http://www.yaml.org

84 5 The Pyomo Command

pyomo solve concrete1.yaml

This configuration file defines the same logic as the first command in the previous
paragraph, and the following configuration file defines the same logic as the second
command:

abstract5.yaml
model:
filename: abstract5.py

data:
files:

- abstract5.dat
solvers:
- solver name: glpk

No command-line options are required when using a configuration file, because all
command-line options have corresponding elements in a configuration file. Further-
more, there are configuration options that can only be expressed in a configuration
file. A template configuration file can be generated with the
--generate-config-template option .

The --help and --generate-config-template options for the solve
subcommand require the --solver option. These two options provide solver-
specific summaries respectively for command-line options and configuration files.
For example, you could execute the following command to get command-line op-
tions that are suitable for the glpk solver:

pyomo solve --solver=glpk --help

Table 5.1 summarizes key options for the solve subcommand that are com-
monly used.

5.5.1 Specifying the Model Object

A Pyomo model file is a Python file that defines a Pyomo model object. Note that a
Pyomo model file is not restricted in the type of Python statements that it includes;
a model file can execute an arbitrary Python script, but the expectation is that it
generate an object that contains the Pyomo model. Within the solve subcommand,
a model file is executed with a Python import command, and thus it is interpreted
like any other Python file.

In the simplest case, a Pyomo model file contains Python commands that cre-
ate a model object that is stored in the model variable. For example, consider the
following simple LP:

5.5 The solve Subcommand 85

Option Description
-c, --catch-errors Trigger failures for exceptions and print the program stack.
--json Store results in JSON format.
-k, --keepfiles Keep temporary files.
-l, --log Print the solver logfile after performing optimization.
--logfile FILE Redirect output to the specified file.
--logging LEVEL Specify the logging level: quiet, warning, info, verbose, de-

bug.
--model-name NAME The name of the model object that is created in the speci-

fied Pyomo module.
--path PATH Give a path that is used to find Pyomo python files.
--report-timing Report various timing statistics during model construction.
--results-format FORMAT Specify the results format: json or yaml.
--save-results FILE The filename to which the results are saved.
--show-results Print the results object after optimization.
--solver SOLVER Specify the solver name.
--solver-executable FILE The executable used by the solver interface.
--solver-io FORMAT The type of IO used to execute the solver. Different solvers

support different types of IO, but the following are com-
mon options: lp - generate LP files, nl - generate NL files,
python - direct Python interface.

--solver-manager TYPE The technique that is used to manage solver executions.
--stream-output Stream the solver output to provide information about the

solver’s progress.
--solver-options STRING String describing solver options.
--solver-suffix SUFFIXES Solution suffixes that will be extracted by the solver (e.g.,

rc, dual, or slack).
--summary Summarize the final solution after performing optimiza-

tion.
--symbolic-solver-labels When interfacing with the solver, use symbol

names derived from the model. For example,
”my special variable[1 2 3]” instead of ”v1”. When
using the ASL solvers, this option generates correspond-
ing .row (constraints) and .col (variables) files.

--tempdir TEMPDIR Specify the directory where temporary files are generated.

Table 5.1: Commonly used options for the pyomo solve subcommand.

abstract5.py
from pyomo.environ import *

model = AbstractModel()

model.N = Set()
model.M = Set()
model.c = Param(model.N)
model.a = Param(model.N, model.M)
model.b = Param(model.M)

model.x = Var(model.N, within=NonNegativeReals)

86 5 The Pyomo Command

def obj_rule(model):
return sum(model.c[i]*model.x[i] for i in model.N)

model.obj = Objective(rule=obj_rule)

def con_rule(model, m):
return sum(model.a[i,m]*model.x[i] for i in model.N) \

>= model.b[m]
model.con = Constraint(model.M, rule=con_rule)

This is an abstract Pyomo model that is stored in the model variable.
If a user defines their model with a different variable name, then the

--model-name option can be used to direct Pyomo to select that name. For ex-
ample, we can adapt the previous example to store the model in Model:

abstract6.py
from pyomo.environ import *

Model = AbstractModel()

Model.N = Set()
Model.M = Set()
Model.c = Param(Model.N)
Model.a = Param(Model.N, Model.M)
Model.b = Param(Model.M)

Model.x = Var(Model.N, within=NonNegativeReals)

def obj_rule(Model):
return sum(Model.c[i]*Model.x[i] for i in Model.N)

Model.obj = Objective(rule=obj_rule)

def con_rule(Model, m):
return sum(Model.a[i,m]*Model.x[i] for i in Model.N) \

>= Model.b[m]
Model.con = Constraint(Model.M, rule=con_rule)

This model can be optimized with the following command:
pyomo solve --solver=glpk --model-name=Model \

abstract6.py abstract6.dat

Aside from supporting greater flexibility for the user, this option allows users to
define multiple models in a Pyomo model file and then select the model that is
optimized when the solve subcommand is executed.

5.5.2 Selecting Data with Namespaces

Section 6.7 introduces the namespace command in Pyomo data files. This com-
mand is used to define blocks of data commands that are integrated optionally into
a model. The solve subcommand provides the --namespace option to specify

5.5 The solve Subcommand 87

one or more namespaces that are used to construct an instance of an abstract model;
the --ns is a shorter alias for this option. For example, the command

pyomo solve --solver=glpk --namespace=data1 abstract5.py \
abstract5-ns1.dat

creates and optimizes the abstract model in abstract5.py using the following
data commands:

namespace data1 {
set N := 1 2 ;

set M := 1 2 ;

param c :=
1 1
2 2 ;

param a :=
1 1 3
2 1 4
1 2 2
2 2 5 ;

param b :=
1 1
2 2 ;

}

namespace data2 {
set N := 3 4 ;

set M := 5 6 ;

param c :=
3 10
4 20 ;

param a :=
3 5 3
4 5 4
3 6 2
4 6 5 ;

param b :=
5 1
6 2 ;

}

This command specifies the data1 namespace, which has an optimal solution of
0.8. Similarly, the command

pyomo solve --solver=glpk --namespace=data2 abstract5.py \
abstract5-ns1.dat

creates and optimizes the same model using the data2 namespace, which has an

88 5 The Pyomo Command

optimal solution of 8. A different index set is used in the data2 data, as well as
different objective coefficients.

The previous example illustrates how namespaces allow the user to specify dif-
ferent data sets within a single data command file. Note that a model can be con-
structed from data commands using multiple namespaces, including data that is not
in a namespace. Consider the following data commands:

set N := 1 2;

namespace c1 {
param c :=
1 1
2 2 ;

}

namespace c2 {
param c :=
1 10
2 20 ;

}

namespace data1 {
set M := 1 2 ;

param a :=
1 1 3
2 1 4
1 2 2
2 2 5 ;

param b :=
1 1
2 2 ;

}

namespace data2 {
set M := 5 6 ;

param a :=
1 5 3
2 5 4
1 6 2
2 6 5 ;

param b :=
5 1
6 2 ;

}

This includes four namespaces and data commands outside of a namespace. The
command

pyomo solve --solver=glpk --namespace=c1 --namespace=data2 \
abstract5.py abstract5-ns2.dat

5.5 The solve Subcommand 89

creates and optimizes the abstract modeling in abstract5.py using data com-
mands from the c1 and data2 namespaces, as well as the data command for N,
which is outside of any namespace. Note that if multiple namespaces contain data
commands for the same component, then the component is initialized with the data
from first namespace that contains the corresponding data command. If there is not
a namespace containing a corresponding data command, then the data commands
outside of namespaces are used to initialize the component.

5.5.3 Customizing Pyomo’s Workflow

The different steps that are executed by the solve subcommand represent a generic
workflow for model construction and optimization. This workflow can be cus-
tomized using a variety of callback functions that are defined within a Pyomo model
file. These callback functions allow the user to define additional analysis steps, as
well as replace some of the default steps in the workflow.

Table 5.2 summarizes the callback functions and the functionality that they sup-
port. Each callback function takes one or more keyword arguments in the form
keyword = value. Consequently, there are two different ways that a callback
function can be defined in Python. Consider the pyomo print results callback
function, which takes three arguments: options, instance, and results.
This function can be defined with default values that are ignored:

def pyomo_print_results(options=None, instance=None,
results=None):

"""A callback with dummy default values"""
print options

Alternatively, Python allows functions to be defined that accept arbitrary arguments
and keywords. The keyword arguments are passed in as a dictionary as follows:

def pyomo_print_results(**kwds):
"""A callback with arbitrary keyword arguments"""
print kwds.get(’options’,None)

In the second example, the dictionary for keyword arguments is used to explicitly
reference a function argument. The callback functions will always pass in their ex-
pected arguments, so no additional error checking is required.

There are several standard arguments for the callback functions described in Ta-
ble 5.2. The options argument is an enhanced Python dictionary that contains
the command-line options sent to the solve subcommand. The model argument
is the Pyomo model object, and the instance argument is the model instance
that is constructed from this model. In the case where the user defines a model us-
ing ConcreteModel, then the model and instance arguments are the same
object. Other arguments are described with their associated callback functions.

90 5 The Pyomo Command

Function Description
pyomo preprocess Perform a preprocessing step before model construction
pyomo create model Construct and return a model object
pyomo create modeldata Construct and return a DataPortal object
pyomo print model Output model object information
pyomo modify instance Modify the model instance
pyomo print instance Output model instance information
pyomo save instance Save the model instance
pyomo print results Print the optimization results
pyomo save results Save the optimization results
pyomo postprocess Perform a postprocessing step after optimization

Table 5.2: Callback functions that can be used in a Pyomo model file to customize the workflow
in the solve subcommand.

pyomo preprocess

This callback function is executed before model construction to perform preprocess-
ing steps. This function has one argument: options. For example, the following
callback function simply prints the command-line options:

def pyomo_preprocess(options=None):
print("Here are the options that were provided:")
if options is not None:

options.display()

pyomo create model

This callback function is used to construct a model. This function has two argu-
ments: options and model options. The latter argument contains the options
for constructing the model, which are specified with the --model-options
command-line option. The return value of this function must be the model ob-
ject that has been created, which may be either an abstract or concrete model.
For example, the following callback function creates a model by importing the
abstract6.py file and then returning the Model object:

def pyomo_create_model(options=None, model_options=None):
sys.path.append(abspath(dirname(__file__)))
abstract6 = __import__(’abstract6’)
sys.path.remove(abspath(dirname(__file__)))
return abstract6.Model

5.5 The solve Subcommand 91

pyomo create modeldata

This callback function creates a model data object that is used to create a model
instance. Model data objects are useful in contexts where a set of different data
sources need to be specified for model constructions. This function has two argu-
ments: options and model. The return value must be a DataPortal object.
For example, the following callback function creates a DataPortal object from
the file abstract6.dat:

def pyomo_create_dataportal(options=None, model=None):
data = DataPortal(model=model)
data.load(filename=’abstract6.dat’)
return data

pyomo print model

This callback function prints an abstract model before a model instance is created.
This function has two arguments: options and model. The following example
calls the pprint method to print detailed information about an abstract model:

def pyomo_print_model(options=None, model=None):
if options[’runtime’][’logging’]:

model.pprint()

pyomo modify instance

This callback function modifies the model instance after it has been constructed.
This function has three arguments: options, model, and instance. The fol-
lowing callback fixes a variable after the model is constructed:

def pyomo_modify_instance(options=None, model=None,
instance=None):

instance.x[1].value = 0.0
instance.x[1].fixed = True

pyomo print instance

This callback function prints the Pyomo model instance. This function is used to
print the concrete model instance rather than the abstract model. This function
has two arguments: options and instance. The following example calls the
pprint method to print detailed information about a model instance:

def pyomo_print_instance(options=None, instance=None):
if options[’runtime’][’logging’]:

instance.pprint()

92 5 The Pyomo Command

pyomo save instance

This callback function saves the Pyomo model instance. This function has two ar-
guments: options and instance. Note that Pyomo does not specify how the
model is saved. However, a convenient mechanism would be to use Python’s pickle
mechanism:

def pyomo_save_instance(options=None, instance=None):
OUTPUT = open(’abstract7.pyomo’,’w’)
OUTPUT.write(str(pickle.dumps(instance)))
OUTPUT.close()

pyomo print results

This callback function prints the results generated from optimization. This function
has three arguments: options, instance, and results. The results object
supports a generic summary of optimization solutions, solver statistics, etc. in both
the JSON or YAML formats. Thus, this callback function can simply print this data:

def pyomo_print_results(options=None, instance=None,
results=None):

print(results)

However, the solve subcommand includes the --print-results option,
which performs this operation. More generally, this callback function is included
to allow users to provide problem-specific summaries of their optimization results.

pyomo save results

This callback function is used to save the results generated from optimization. This
function has three arguments: options, instance, and results. This call-
back function can simply print the results to a file:

def pyomo_save_results(options=None, instance=None,
results=None):

OUTPUT = open(’abstract7.results’,’w’)
OUTPUT.write(str(results))
OUTPUT.close()

The solve subcommand includes the --save-results option, which performs
this operation. More generally, this callback function is included to allow users to
save problem-specific summary of their optimization results.

5.5 The solve Subcommand 93

pyomo postprocess

This callback function is executed after optimization to perform postprocessing
steps. This function has three arguments: options, instance, and results.
For example, the following function prints a simple summary of the optimization
results:

def pyomo_postprocess(options=None, instance=None,
results=None):

instance.solutions.load_from(results, \
allow_consistent_values_for_fixed_vars=True)

print("Solution value "+str(value(instance.obj)))

5.5.4 Customizing Solver Behavior

The generic workflow supported by the solve subcommand includes the execution
of a solver to optimize (or otherwise analyze) a model. A variety of command-line
options are used to control solver behavior. The --solver option is used to specify
the name of the solver that is constructed.

The default behavior of the solve subcommand is to execute the solver, wait
for termination, and then collect the results. Remote and asynchronous execution
of solvers can also be enabled by selecting an appropriate solver manager with the
--solver-manager options.

The --solver option can specify two classes of solvers: the names of command-
line executables that are on the user’s path, and predefined solver interfaces.
Command-line executables are assumed to perform I/O using NL files. Thus,
command-line executables can be optimized with any solver executable that is built
with the AMPL solver library.

Solver options can be specified in a generic manner using the
--solver-options option. This specifies a string that is interpreted as one or
more option-value pairs. For example, the following option passes the mipgap op-
tion to the glpk solver:

pyomo solve --solver=glpk --solver-options=’mipgap=0.01’ \
concrete1.py

Additionally, the --timelimit option can be used to specify the maximum run-
time of the solver. This is typically passed into the solver, and thus this timelimit is
enforced in a solver-dependent manner.

Solver results are generated from solution information provided by the solver,
and optionally a logfile of output from the solver. By default, Pyomo captures in-
formation about the variable values that are selected by the solver. However, there
is often additional information that a user may wish to collect, such as dual values
for constraints in a linear program. For performance reasons, this data is not auto-
matically collected by the solve subcommand, but the --solver-suffixes

94 5 The Pyomo Command

option is used to specify the names of the data that is desired. A suffix is simply
data for a constraint or variable that results from the application of a solver. Suffixes
can be specified by name, or with a regular expression. For example, the following
command specifies that all suffixes generated by the solver are requested:

pyomo solve --solver=glpk --solver-suffix=’.*’ concrete2.py

The following suffixes are currently supported within Pyomo:

• dual - constraint dual values

• rc - reduced costs

• slack - constraint slack values

Note that a given solver may provide only a subset of these suffixes.
The --tempdir and --keepfiles options can be used to archive the tempo-

rary files that Pyomo uses. By default, Pyomo uses temporary files that are automat-
ically generated in system temporary directories. The --tempdir option is used
to specify the directory that these files are created in. By default, temporary files are
deleted after optimization is completed. The --keepfiles options disables this
deletion, which allows the user to see the data that Pyomo sends to the optimizer.

5.5.5 Analyze Solver Results

The --postprocess option can be used to specify a Python module that is ex-
ecuted after the solver has executed. A typical use of this option is to specify post-
processing steps that interpret the solver results in a problem-dependent manner.

Post-processing steps can be defined by declaring a pyomo postprocess
function in the Python modules that are used in post processing. Figure /ref-
fig:command:postprocess provides an example of a post-processing function that
writes the final solutions to a file in the CSV format.

5.5.6 Managing Diagnostic Output

The solve subcommand includes a variety of options that control the generation of
diagnostic output and other information that useful to learn more about the workflow
that this is executed.

The default output of the solve subcommand is a terse summary of the ma-
jor steps that are executed. The --log and --stream-output options are
used to print the solver output. The --log option is used to print the solver out-
put after the solver has terminated, and the --stream-output option is be
used to print the solver output as it is generated. Similarly, the --summary and
--show-results options print different summaries of the optimization results.

5.5 The solve Subcommand 95

import csv

def pyomo_postprocess(options=None, instance=None,
results=None):

#
Collect the data
#
vars = set()
data = {}
f = {}
for i in range(len(results.solution)):

data[i] = {}
for var in results.solution[i].variable:

vars.add(var)
data[i][var] = \

results.solution[i].variable[var][’Value’]
for obj in results.solution[i].objective:

f[i] = results.solution[i].objective[obj][’Value’]
break

#
Write a CSV file, with one row per solution.
The first column is the function value, the remaining
columns are the values of nonzero variables.
#
rows = []
vars = list(vars)
vars.sort()
rows.append([’obj’]+vars)
for i in range(len(results.solution)):

row = [f[i]]
for var in vars:

row.append(data[i].get(var,None))
rows.append(row)

print("Creating results file results.csv")
OUTPUT = open(’results.csv’, ’w’)
writer = csv.writer(OUTPUT)
writer.writerows(rows)
OUTPUT.close()

Fig. 5.1: A post-processing plugin that writes final solutions in a CSV file.

The --summary command prints a summary of the Pyomo model, after the results
are loaded.

The --show-results prints the final results. If the PyYAML package is in-
stalled, then the default results format is YAML and the final results are stored in
the file results.yml. Otherwise, the default results format is JSON and the fi-
nal results are stored in the file results.json. The --json option can be used
to specify the JSON results format when the PyYAML package is installed. The
--save-results option can be used to specify an alternative results file.

Pyomo uses a standard Python logging system to manage the printing of logging

96 5 The Pyomo Command

messages for the underlying software in Pyomo and PyUtilib. By default, logging
messages that represent Pyomo errors and warnings are always printed, and all PyU-
tilib logging messages are suppressed. The --quiet option suppresses all log mes-
sages except for those that refer to errors. The --warning option enables warning
messages for both Pyomo and PyUtilib. The --info option enables informative,
warning and error log messages for Pyomo and PyUtilib.

The --verbose option enables debugging log messages for Pyomo and PyU-
tilib. This option can be specified multiple times to enable logging messages for
different parts of Pyomo and PyUtilib: (1) debugging for just Pyomo, (2) debugging
for all Pyomo packages, and (3) debugging for all Pyomo and PyUtilib packages.
The --debug option enables debugging logging, and it allows exceptions to trigger
a failure in which the program stack is printed.

5.6 Discussion

The long-term goal is to make the pyomo command the single portal for all
workflows that are provided with Pyomo. Consequently, scripts like pyomo2lp
have been removed and replaced with the convert subcommand. This integra-
tion has been completed for most packages in Pyomo. The major exception is the
pyomo.pysp package, which has a variety of custom scripts (e.g., runph) that
will be eventually supported within the pyomo command.

Checkers are probably most useful for abstract models and simple concrete mod-
els. Python scripts that perform complex operations on concrete models could also
be analyzed with this subcommand, but errors in such scripts could be much harder
to detect. Model checking is particularly useful for new users, so this may be the
default in future versions of Pyomo.

Chapter 6

Data Command Files

Abstract Data command files allow users to define set and parameter data with a
high-level language. This chapter discusses the format of these data commands, as
well as the various data declarations that Pyomo supports. Pyomo’s data commands
include both direct specifications of data, as well as specifications that indicate how
data is to be extracted from a variety of different sources, including table files, CSV
files, spreadsheets, and databases.

6.1 Model Data

The Set and Param components of a Pyomo model are used to define data values
used to construct constraints and objectives. Previous chapters have illustrated that
these components are not necessary to develop complex models. However, The Set
and Param components can be used to define abstract data declarations, where no
data values are specified. For example:

model.A = Set(within=Reals)
model.p = Param(model.A, within=Integers)

Data command files can be used to initialize data declarations in Pyomo models,
and in particular they are useful for initializing abstract data declarations.

Pyomo’s data command files employ a domain-specific language whose syntax
closely resembles the syntax of AMPL’s data commands [2]. A data command file
consists of a sequence of commands that specify set and parameter data, or specify
where such data is to be obtained from external sources. The following commands
can be used to declare data:

• The set command declares set data.
• The param command declares a table of parameter data, which can also include

the declaration of the set data used to index the parameter data.
• The table command declares a two-dimensional table of parameter data.

97© Springer International Publishing AG 2017
W.E. Hart et al., Pyomo — Optimization Modeling in Python, Springer Optimization
and Its Applications 67, DOI 10.1007/978-3-319-58821-6_6

98 6 Data Command Files

• The load command defines how set and parameter data is loaded from external
data sources, including ASCII table files, CSV files, XML files, YAML files,
JSON files, ranges in spreadsheets, and database tables.

The following commands can also be used in data command files:

• The include command specifies a data command file that is processed im-
mediately.

• The data and end commands do not perform any actions, but they provide
compatibility with AMPL scripts that define data commands.

Finally, the namespace declaration allows data commands to be organized into
named groups that can be enabled or disabled during model construction.

Note that Pyomo’s data commands do not exactly correspond to AMPL data
commands. The set and param commands are designed to closely match AMPL’s
syntax and semantics. However, these commands only support a subset of the corre-
sponding declarations in AMPL. However, it is not possible to support other AMPL
commands because Pyomo treats data commands as data declarations while AMPL
treats data commands as part of its scripting language. For example, the syntax of
the AMPL table command allows the user to specify complex mappings from
table data values to corresponding model parameters and sets. The corresponding
Pyomo load command supports much simpler mappings. Complex mappings are
accomplished in Pyomo via scripting.

The remaining sections in this chapter describe the syntax Pyomo’s data file com-
mands. The syntax of data commands can be quite varied, and the goal of this chap-
ter is to provide detailed examples that illustrate these commands. Note that all Py-
omo data commands are terminated with a semicolon, and the syntax of data com-
mands does not depend on whitespace. Thus, data commands can be broken across
multiple lines – newlines and tab characters are ignored – and data commands can
be formatted with whitespace with few restrictions.

6.2 The set Command

6.2.1 Simple Sets

The set data command explicitly specifies the members of either a single set or an
array of sets, i.e., an indexed set. A single set is specified with a list of data values
that are included in this set. The formal syntax for the set data command is:

set <setname> := [<value>] ... ;

The data values in a set consist of either numeric values, simple strings or quoted
strings:

• Numeric values are any string that can be evaluated by Python as a numeric
value, e.g., integer, float, scientific notation, or boolean.

6.2 The set Command 99

• Simple strings are sequences of alpha-numeric characters.
• Quoted strings are simple strings that are included in a pair of single or double

quotes. A quoted string can include quotes within the quoted string.

There is no restriction on the values in a set declaration. A set may be empty, and it
may contain any combination of numeric and non-numeric string values. Validation
of set data is performed when constructing a Pyomo model, not while parsing a data
command file. For example, the following are valid set commands:

An empty set
set A := ;

A set of numbers
set A := 1 2 3;

A set of strings
set B := north south east west;

A set of mixed types
set C :=
0
-1.0e+10
’foo bar’
infinity
"100"
;

Note that numeric values are automatically converted to Python integer or floating
point values when the set data specification is parsed. A quoted string can be used
to define a string value that contains a numeric value. However, if the string strictly
specifies a numeric value, it will be converted by Python to a numeric type. For ex-
ample, the string “100” is included in set C, but this value is converted to a numeric
value.

6.2.2 Sets of Tuple Data

The set data command can also specify tuple data with the standard notation for
tuples. For example, suppose that set A contains 3-tuples:

model.A = Set(dimen=3)

The following set data command then specifies that A is the set containing the
tuples (1,2,3) and (4,5,6):

set A := (1,2,3) (4,5,6) ;

Alternatively, set data can simply be listed in the order that the tuple is represented:
set A := 1 2 3 4 5 6 ;

Obviously, the number of data elements specified using this syntax should be a
multiple of the set dimension.

100 6 Data Command Files

Sets with 2-tuple data can also be specified in a matrix denoting set membership.
For example, the following set data command declares 2-tuples in A using + to
denote valid tuples and - to denote invalid tuples:

set A : A1 A2 A3 A4 :=
1 + - - +
2 + - + -
3 - + - - ;

This data command declares the following five 2-tuples: (’A1’,1), (’A1’,2), (’A2’,3),
(’A3’,2), (’A4’,1).

Finally, a set of tuple data can be concisely represented with tuple templates that
represent a slice of tuple data. For example, suppose that the set A contains 4-tuples:

model.A = Set(dimen=4)

The following set data command declares groups of tuples that are defined by a
template and data to complete this template:

set A :=
(1,2,*,4) A B
(*,2,*,4) A B C D ;

A tuple template consists of a tuple that contains one or more * symbols instead
of a value. These represent indices where the tuple value is replaced by the values
from the list of values that follows the tuple template. In this example, the following
tuples are in set A:

(1, 2, ’A’, 4)
(1, 2, ’B’, 4)
(’A’, 2, ’B’, 4)
(’C’, 2, ’D’, 4)

6.2.3 Set Arrays

The set data command can also be used to declare data for a set array. Each set in
a set array must be declared with a separate set data command with the following
syntax:

set <set-name>[<index>] := [<value>] ... ;

Because set arrays can be indexed by an arbitrary set, the index value may be a nu-
meric value, a non-numeric string value, or a comma-separated list of string values.

Suppose that a set A is used to index a set B as follows:
model.A = Set()
model.B = Set(model.A)

Then set B is indexed using the values declared for set A:

6.3 The param Command 101

set A := 1 aaa ’a b’;

set B[1] := 0 1 2;
set B[aaa] := aa bb cc;
set B[’a b’] := ’aa bb cc’;

6.3 The param Command

Simple or non-indexed parameters are declared in an obvious way, as shown by
these examples:

param A := 1.4;
param B := 1;
param C := abc;
param D := true;
param E := 1.0e+04;

Parameters can be defined with numeric and string data. Numeric data is defined
with a string that can be evaluated by Python as a numeric value, which includes
integer, floating point, scientific notation, and boolean. Boolean values can be spec-
ified with a variety of strings: TRUE, true, True, FALSE, false, and False.
Note that parameters cannot be defined without data, so there is no analog to the
specification of an empty set.

Most parameter data is indexed over one or more sets, and there are a number of
ways the param data command can be used to specify indexed parameter data.

6.3.1 One-dimensional Parameter Data

One-dimensional parameter data is indexed over a single set. Suppose that the pa-
rameter B is a parameter indexed by the set A:

model.A = Set()
model.B = Param(model.A)

A param data command can specify values for B with a list of index-value pairs:
set A := a c e;

param B := a 10 c 30 e 50;

Because whitespace is ignored, this example data command file can be reorganized
to specify the same data in a tabular format:

102 6 Data Command Files

set A := a c e;

param B :=
a 10
c 30
e 50
;

Multiple parameters can be defined using a single param data command. For
example, suppose that parameters B, C, and D are one-dimensional parameters all
indexed by the set A:

model.A = Set()
model.B = Param(model.A)
model.C = Param(model.A)
model.D = Param(model.A)

Values for these parameters can be specified using a single param data command
that declares these parameter names followed by a list of index and parameter val-
ues:

set A := a c e;

param : B C D :=
a 10 -1 1.1
c 30 -3 3.3
e 50 -5 5.5
;

The values in the param data command are interpreted as a list of sublists, where
each sublist consists of an index followed by the corresponding numeric value.

Note that parameter values do not need to be defined for all indices. For example,
the following data command file is valid:

set A := a c e g;

param : B C D :=
a 10 -1 1.1
c 30 -3 3.3
e 50 -5 5.5
;

The index g is omitted from the param command, and consequently this index
is not valid for the model instance that uses this data. More complex patterns of
missing data can be specified using the “.” character to indicate a missing value.
This syntax is useful when specifying multiple parameters that do not necessarily
have the same index values:

6.3 The param Command 103

set A := a c e;

param : B C D :=
a . -1 1.1
c 30 . 3.3
e 50 -5 .
;

This example provides a concise representation of parameters that share a common
index set while using different index values.

Note that this data file specifies the data for set A twice: (1) when A is defined and
(2) implicitly when the parameters are defined. An alternate syntax for param al-
lows the user to concisely specify the definition of an index set along with associated
parameters:

param : A : B C D :=
a 10 -1 1.1
c 30 -3 3.3
e 50 -5 5.5
;

Finally, we note that default values for missing data can also be specified using
the default keyword:

set A := a c e;

param B default 0.0 :=
c 30
e 50
;

Note that default values can only be specified in param commands that define val-
ues for a single parameter.

6.3.2 Multi-Dimensional Parameter Data

Multi-dimensional parameter data is indexed over either multiple sets or multi-
dimensional sets. Suppose that parameter B is a parameter indexed by set A that
has dimension 2:

model.A = Set(dimen=2)
model.B = Param(model.A)

The syntax of the param data command remains essentially the same when speci-
fying values for B with a list of index and parameter values:

104 6 Data Command Files

set A := a 1 c 2 e 3;

param B :=
a 1 10
c 2 30
e 3 50;

Missing and default values are also handled in the same way with multi-dimensional
index sets:

set A := a 1 c 2 e 3;

param B default 0 :=
a 1 10
c 2 .
e 3 50;

Similarly, multiple parameters can defined with a single param data command.
Suppose that parameters B, C, and D are parameters indexed over set A that has
dimension 2:

model.A = Set(dimen=2)
model.B = Param(model.A)
model.C = Param(model.A)
model.D = Param(model.A)

These parameters can be defined with a single param command that declares the
parameter names followed by a list of index and parameter values:

set A := a 1 c 2 e 3;

param : B C D :=
a 1 10 -1 1.1
c 2 30 -3 3.3
e 3 50 -5 5.5
;

Similarly, the following param data command defines the index set along with the
parameters:

param : A : B C D :=
a 1 10 -1 1.1
c 2 30 -3 3.3
e 3 50 -5 5.5
;

The param command also supports a matrix syntax for specifying the values in
a parameter that has a 2-dimensional index. Suppose parameter B is indexed over
set A that has dimension 2:

model.A = Set(dimen=2)
model.B = Param(model.A)

The following param command defines a matrix of parameter values:

6.4 The table Command 105

set A := 1 a 1 c 1 e 2 a 2 c 2 e 3 a 3 c 3 e;

param B : a c e :=
1 1 2 3
2 4 5 6
3 7 8 9
;

Additionally, the following syntax can be used to specify a transposed matrix of
parameter values:

set A := 1 a 1 c 1 e 2 a 2 c 2 e 3 a 3 c 3 e;

param B (tr) : 1 2 3 :=
a 1 4 7
c 2 5 8
e 3 6 9
;

This functionality facilitates the presentation of parameter data in a natural format.
In particular, the transpose syntax may allow the specification of tables for which
the rows comfortably fit within a single line. However, a matrix may be divided
column-wise into shorter rows since the line breaks are not significant in Pyomo’s
data commands.

For parameters with three or more indices, the parameter data values must be
specified as a series of slices. Each slice is defined by a template followed by a list
of index and parameter values. Suppose that parameter B is indexed over set A that
has dimension 4:

model.A = Set(dimen=4)
model.B = Param(model.A)

The following param command defines a matrix of parameter values with mul-
tiple templates:

set A := (a,1,a,1) (a,2,a,2) (b,1,b,1) (b,2,b,2);

param B :=

[*,1,*,1] a a 10 b b 20
[*,2,*,2] a a 30 b b 40

;

The B parameter consists of four values: B[a,1,a,1]=10, B[b,1,b,1]=20,
B[a,2,a,2]=30, and B[b,2,b,2]=40.

6.4 The table Command

The table data command explicitly specifies a two-dimensional array of parame-
ter data. This command provides a more flexible and complete data declaration than

106 6 Data Command Files

is possible with a param declaration. This command has a similar syntax to the
load command, but it includes a complete specification of the table data.

The following example illustrates a simple table command that declares data
for a single parameter:

table M(A) :
A B M N :=
A1 B1 4.3 5.3
A2 B2 4.4 5.4
A3 B3 4.5 5.5
;

The parameter M is indexed by column A, which must be pre-defined unless declared
separately (see below). The column labels are provided after the colon and before
the :=. Subsequently, the table data is provided. Note that the syntax is not sensitive
to whitespace. Thus, the following is an equivalent table command:

table M(A) :
A B M N :=
A1 B1 4.3 5.3 A2 B2 4.4 5.4 A3 B3 4.5 5.5 ;

Multiple parameters can be declared by simply including additional parameter
names. For example:

table M(A) N(A,B) :
A B M N :=
A1 B1 4.3 5.3
A2 B2 4.4 5.4
A3 B3 4.5 5.5
;

This example declares data for the M and N parameters. As this example illustrates,
these parameters may have different indexing columns.

The indexing columns represent set data, which is specified separately. For ex-
ample:

table A={A} Z={A,B} M(A) N(A,B) :
A B M N :=
A1 B1 4.3 5.3
A2 B2 4.4 5.4
A3 B3 4.5 5.5
;

This example declares data for the M and N parameters, along with the A and Z index-
ing sets. The correspondence between the index set Z and the indices of parameter
N can be made more explicit by indexing N by Z:

table A={A} Z={A,B} M(A) N(Z) :
A B M N :=
A1 B1 4.3 5.3
A2 B2 4.4 5.4
A3 B3 4.5 5.5
;

Set data can also be specified independent of parameter data:

6.4 The table Command 107

table Z={A,B} Y={M,N} :
A B M N :=
A1 B1 4.3 5.3
A2 B2 4.4 5.4
A3 B3 4.5 5.5
;

NOTE: If a table command does not explicitly indicate the indexing sets,
then these are assumed to be initialized separately. A table command can
separately initialize sets and parameters in a Pyomo model, and there is no pre-
sumed association between the data that is initialized. For example, the table
command initializes a set Z and a parameter M that are not related:

table Z={A,B} M(A):
A B M N :=
A1 B1 4.3 5.3
A2 B2 4.4 5.4
A3 B3 4.5 5.5
;

Finally, simple parameter values can be specified with a simple table com-
mand:

table pi := 3.1416 ;

This
The previous examples considered examples of the table command where col-

umn labels are provided. The table command can also be used without column
labels. For example, the first example can be revised to omit column labels as fol-
lows:

table columns=4 M(1)={3} :=
A1 B1 4.3 5.3
A2 B2 4.4 5.4
A3 B3 4.5 5.5
;

The columns=4 is a keyword-value pair that defines the number of columns in
this table; this must be explicitly specified in unlabeled tables. The default column
labels are integers starting from 1; the labels are columns 1, 2, 3, and 4 in this
example. The M parameter is indexed by column 1. The braces syntax declares the
column where the M data is provided.

Similarly, set data can be declared referencing the integer column labels:
table columns=4 A={1} Z={1,2} M(1)={3} N(1,2)={4} :=
A1 B1 4.3 5.3
A2 B2 4.4 5.4
A3 B3 4.5 5.5
;

Declared set names can also be used to index parameters:

108 6 Data Command Files

table columns=4 A={1} Z={1,2} M(A)={3} N(Z)={4} :=
A1 B1 4.3 5.3
A2 B2 4.4 5.4
A3 B3 4.5 5.5
;

Finally, we compare and contrast the table and param commands. Both com-
mands can be used to declare parameter and set data, and both commands can be
used to declare a simple parameter. However, there are some important differences
between these data commands:

• The param command can declare a single set that is used to index one or more
parameters. The table command can declare data for any number of sets,
independent of whether they are used to index parameter data.

• The param command can declare data for multiple parameters only if they
share the same index set. The table command can declare data for any number
of parameters that are may be indexed separately.

• The table syntax unambiguously describes the dimensionality of indexing
sets. The param command must be interpreted with a model that provides the
dimension of the indexing set.

This last point provides a key motivation for the table command. Specifically, the
table command can be used to reliably initialize concrete models using Pyomo’s
DataPortal object. By contrast, the param command can only be used to ini-
tialize concrete models with parameters that are indexed by a single column (i.e., a
simple set).

6.5 The load Command

The load command provides a mechanism for loading data from a variety of ex-
ternal tabular data sources. This command loads a table of data that represents set
and parameter data in a Pyomo model. The table consists of rows and columns for
which all rows have the same length, all columns have the same length, and the first
row represents labels for the column data.

The load command can load data from a variety of different external data
sources:

• TAB File: A text file format that uses whitespace to separate columns of values
in each row of a table.

• CSV File: A text file format that uses comma or other delimiters to separate
columns of values in each row of a table.

• XML File: An extensible markup language for documents and data structures.
XML files can represent tabular data.

• Excel File: A spreadsheet data format that is primarily used by the Microsoft
Excel application.

6.5 The load Command 109

• Database: A relational database.

This command uses a data manager that coordinates how data is extracted from a
specified data source. In this way, the load command provides a generic mecha-
nism that enables Pyomo models to interact with standard data repositories that are
maintained in an application-specific manner.

In the following section, we illustrate the syntax of the load command when
used to load data from TAB files. Next, we discuss the command syntax that is
used to load data from TAB, CSV and XML files, which are loaded in a similar
manner. In Section 6.5.4 we provide corresponding examples for spreadsheets and
relational databases. This section also describes advanced features that are specific
to databases, including the specification of SQL queries to collect data.

6.5.1 Simple Load Examples

The simplest illustration of the load command is specifying data for an indexed
parameter. Consider the file Y.tab:

A Y
A1 3.3
A2 3.4
A3 3.5

This file specifies the values of parameter Ywhich is indexed by set A. The following
load command loads the parameter data:

load Y.tab : [A] Y;

The first argument is the filename. The options after the colon indicate how the table
data is mapped to model data. Option [A] indicates that set A is used as the index,
and option Y indicates the parameter that is initialized.

Similarly, the following load command loads both the parameter data as well as
the index set A:

load Y.tab : A=[A] Y;

The difference is the specification of the index set, A=[A], which indicates that set
A is initialized with the index loaded from the ASCII table file.

Set data can also be loaded from a ASCII table file that contains a single column
of data:

A
A1
A2
A3

The format option must be specified to denote the fact that the relational data is
being interpreted as a set:

load A.tab format=set : A;

110 6 Data Command Files

Note that this allows for specifying set data that contains tuples. Consider file
C.tab:

A B
A1 1
A1 2
A1 3
A2 1
A2 2
A2 3
A3 1
A3 2
A3 3

A similar load syntax will load this data into set C:
load C.tab format=set : C;

Note that this example requires that C be declared with dimension two.

6.5.2 Load Syntax Options

The syntax of the load command is broken into two parts. The first part ends with
the colon, and it begins with a filename, database URL, or DSN (data source name).
Additionally, this first part can contain option value pairs. The following options are
recognized:

format A string that denotes how the relational table is interpreted
password The password that is used to access a database
query The query that is used to request data from a database
range The subset of a spreadsheet that is requested
user The user name that is used to access the data source
using The data manager that is used to process the data source
table The database table that is requested

The format option is the only option that is required for all data managers. This
option specifies how a relational table is interpreted to represent set and parameter
data. A complete set of examples for this option is provided in Section 6.5.3. If the
using option is omitted, then the filename suffix is used to select the data manager.
The remaining options are specific to spreadsheets and relational databases, and
these are discussed further in Section 6.5.4.

The second part of the load command consists of the specification of col-
umn names for indices and data. The remainder of this section describes different
specifications and how they define how data is loaded into a model. Suppose file
ABCD.tab defines the following relational table:

A B C D
A1 B1 1 10
A2 B2 2 20
A3 B3 3 30

6.5 The load Command 111

There are many ways to interpret this relational table. It could specify a set of 4-
tuples, a parameter indexed by 3-tuples, two parameters indexed by 2-tuples, and so
on. Additionally, we may wish to select a subset of this table to initialize data in a
model. Consequently, the load command provides a variety of syntax options for
specifying how a table is interpreted.

A simple specification is to interpret the relational table as a set:
load ABCD.tab format=set : Z ;

Note that Z is a set in the model that the data is being loaded into. If this set does
not exist, an error will occur while loading data from this table.

Another simple specification is to interpret the relational table as a parameter
with indexed by 3-tuples:

load ABCD.tab : [A,B,C] D ;

Again, this requires that D be a parameter in the model that the data is being loaded
into. Additionally, the index set for D must contain the indices that are specified in
the table. The load command also allows for the specification of the index set:

load ABCD.tab : Z=[A,B,C] D ;

This specifies that the index set is loaded into the Z set in the model. Similarly, data
can be loaded into another parameter than what is specified in the relational table:

load ABCD.tab : Z=[A,B,C] Y=D ;

This specifies that the index set is loaded into the Z set and that the data in the D
column in the table is loaded into the Y parameter.

This syntax allows the load command to provide an arbitrary specification of
data mappings from columns in a relational table into index sets and parameters.
For example, suppose that a model is defined with set Z and parameters Y and W:

model.Z = Set()
model.Y = Param(model.Z)
model.W = Param(model.Z)

Then the following command defines how these data items are loaded using columns
B, C and D:

load ABCD.tab : Z=[B] Y=D W=C;

When the using option is omitted the data manager is inferred from the file-
name suffix. However, the filename suffix does not always reflect the format of the
data it contains. For example, consider the relational table in the file ABCD.txt:

A,B,C,D
A1,B1,1,10
A2,B2,2,20
A3,B3,3,30

We can specify the using option to load from this file into parameter D and set Z:
load ABCD.txt using=csv : Z=[A,B,C] D ;

112 6 Data Command Files

NOTE: The data managers supported by Pyomo can be listed with the pyomo
help subcommand:

pyomo help --data-managers

The following data managers are supported in Pyomo 5.1:
Pyomo Data Managers

csv
CSV file interface

dat
Pyomo data command file interface

json
JSON file interface

pymysql
pymysql database interface

pyodbc
pyodbc database interface

pypyodbc
pypyodbc database interface

sqlite3
sqlite3 database interface

tab
TAB file interface

xls
Excel XLS file interface

xlsb
Excel XLSB file interface

xlsm
Excel XLSM file interface

xlsx
Excel XLSX file interface

xml
XML file interface

yaml
YAML file interface

6.5.3 Interpreting Tabular Data

By default, a table is interpreted as columns of one or more parameters with associ-
ated index columns. The format option can be used to specify other interpretations
of a table:

6.5 The load Command 113

array The table is a matrix representation of a two dimen-
sional parameter.

param The data is a simple parameter value.
set Each row is a set element.
set array The table is a matrix representation of a set of 2-tuples.
transposed array The table is a transposed matrix representation of a two

dimensional parameter.

We have previously illustrated the use of the set format value to interpret a rela-
tional table as a set of values or tuples. The following examples illustrate the other
format values.

A table with a single value can be interpreted as a simple parameter using the
param format value. Suppose that Z.tab contains the following “table”:

1.1

The following load command then loads this value into parameter p:
load Z.tab format=param: p;

Sets with 2-tuple data can be represented with a matrix format that denotes set
membership. The set array format value interprets a relational table as a matrix
that defines a set of 2-tuples where + denotes a valid tuple and - denotes an invalid
tuple. Suppose that D.tab contains the following relational table:

B A1 A2 A3
1 + - -
2 - + -
3 - - +

Then the following load command loads data into set B:
load D.tab format=set_array: B;

This command declares the following 2-tuples: (’A1’,1), (’A2’,2), and (’A3’,3).
Parameters with 2-tuple indices can be interpreted with a matrix format that

where rows and columns are different indices. Suppose that U.tab contains the
following table:

I A1 A2 A3
I1 1.3 2.3 3.3
I2 1.4 2.4 3.4
I3 1.5 2.5 3.5
I4 1.6 2.6 3.6

Then the following load command loads this value into parameter U with a 2-
dimensional index using the array format value.

load U.tab format=array: A=[X] U;

The transpose array format value also interprets the table as a matrix, but it
loads the data in a transposed format:

load U.tab format=transposed_array: A=[X] U;

Note that these format values do not support the initialization of the index data.

114 6 Data Command Files

6.5.4 Loading from Spreadsheets and Relational Databases

Many of the options for the load command are specific to spreadsheets and rela-
tional databases. The range option is used to specify the range of cells that are
loaded from a spreadsheet. The range of cells represents a table in which the first
row of cells defines the column names for the table.

Suppose that file ABCD.xls contains the range ABCD that is shown in Fig-
ure 6.1. The following command loads this data to initialize parameter D and index
Z:

load ABCD.xls range=ABCD : Z=[A,B,C] Y=D ;

Thus, the syntax for loading data from spreadsheets only differs from CSV and
ASCII text files by the use of the range option.

Fig. 6.1: A snapshot of the ABCD.xls spreadsheet, which defines a relational table in the ABCD
range.

When loading from a relational database, the data source specification is a file-
name or data connection string. Access to a database may be restricted, and thus the
specification of username and password options may be required. Alternatively,
these options can be specified within a data connection string.

A variety of database interface packages are available within Python. The using
option is used to specify the database interface package that will be used to ac-
cess a database. For example, the pyodbc interface can be used to connect to Ex-
cel spreadsheets. The following command loads data from the Excel spreadsheet
ABCD.xls using the pyodbc interface. The command loads this data to initialize
parameter D and index Z:

load ABCD.xls using=pyodbc table=ABCD : Z=[A,B,C] Y=D ;

The using option specifies that the pyodbc package will be used to connect with
the Excel spreadsheet. The table option specifies that the table ABCD is loaded
from this spreadsheet. Similarly, the following command specifies a data connection
string to specify the ODBC driver explicitly:

load "Driver={Microsoft Excel Driver (*.xls)}; Dbq=ABCD.xls;"
using=pyodbc
table=ABCD : Z=[A,B,C] Y=D ;

6.5 The load Command 115

ODBC drivers are generally tailored to the type of data source that they work with;
this syntax illustrates how the load command can be tailored to the details of the
database that a user is working with.

The previous examples specified the table option, which declares the name
of a relational table in a database. Many databases support the Structured Query
Language (SQL), which can be used to dynamically compose a relational table from
other tables in a database. The classic diet problem will be used to illustrate the use
of SQL queries to initialize a Pyomo model. In this problem, a customer is faced
with the task of minimizing the cost for a meal at a fast food restaurant – they must
purchase a sandwich, side, and a drink for the lowest cost. The following is a Pyomo
model for this problem:

diet1.py
from pyomo.environ import *

infinity = float(’inf’)
MAX_FOOD_SUPPLY = 20.0 # There is a finite food supply

model = AbstractModel()

--

model.FOOD = Set()
model.cost = Param(model.FOOD, within=PositiveReals)
model.f_min = Param(model.FOOD, within=NonNegativeReals, \

default=0.0)
def f_max_validate (model, value, j):

return model.f_max[j] > model.f_min[j]
model.f_max = Param(model.FOOD, validate=f_max_validate, \

default=MAX_FOOD_SUPPLY)

model.NUTR = Set()
model.n_min = Param(model.NUTR, within=NonNegativeReals, \

default=0.0)
model.n_max = Param(model.NUTR, default=infinity)
model.amt = Param(model.NUTR, model.FOOD, \

within=NonNegativeReals)

--

def Buy_bounds(model, i):
return (model.f_min[i], model.f_max[i])

model.Buy = Var(model.FOOD, bounds=Buy_bounds, \
within=NonNegativeIntegers)

--

def Total_Cost_rule(model):
return sum(model.cost[j] * model.Buy[j] for j in \

model.FOOD)
model.Total_Cost = Objective(rule=Total_Cost_rule, \

sense=minimize)

116 6 Data Command Files

--

def Entree_rule(model):
entrees = [’Cheeseburger’, ’Ham Sandwich’, ’Hamburger’, \

’Fish Sandwich’, ’Chicken Sandwich’]
return sum(model.Buy[e] for e in entrees) >= 1

model.Entree = Constraint(rule=Entree_rule)

def Side_rule(model):
sides = [’Fries’, ’Sausage Biscuit’]
return sum(model.Buy[s] for s in sides) >= 1

model.Side = Constraint(rule=Side_rule)

def Drink_rule(model):
drinks = [’Lowfat Milk’, ’Orange Juice’]
return sum(model.Buy[d] for d in drinks) >= 1

model.Drink = Constraint(rule=Drink_rule)

Suppose that the file diet1.sqlite be a SQLite database file that contains
the following data in the Food table:

FOOD cost

Cheeseburger 1.84
Ham Sandwich 2.19
Hamburger 1.84
Fish Sandwich 1.44
Chicken Sandwich 2.29
Fries 0.77
Sausage Biscuit 1.29
Lowfat Milk 0.60
Orange Juice 0.72

In addition, the Food table has two additional columns, f min and f max, with
no data for any row. These columns exist to match the structure for the parameters
used in the model.

We can solve the diet1 model using the Python definition in diet1.py and
the data from this database. The file diet.sqlite.dat specifies a load com-
mand that uses that sqlite3 data manager and embeds a SQL query to retrieve
the data:

File diet.sqlite.dat

load "diet.sqlite"
using=sqlite3
query="SELECT FOOD,cost,f_min,f_max FROM Food"
: FOOD=[FOOD] cost f_min f_max ;

The PyODBC driver module will pass the SQL query through an Access ODBC
connector, extract the data from the diet1.mdb file, and return it to Pyomo. The
Pyomo ODBC handler can then convert the data received into the proper format for

6.7 Data Namespaces 117

solving the model internally. More complex SQL queries are possible, depending on
the underlying database and ODBC driver in use. However, the name and ordering of
the columns queried are specified in the Pyomo data file; using SQL wildcards (e.g.,
SELECT *) or column aliasing (e.g., SELECT f AS FOOD) may cause errors in
Pyomo’s mapping of relational data to parameters.

6.6 The include Command

The include command allows a data command file to execute data commands
from another file. For example, the following command file executes data commands
from ex1.dat and then ex2.dat:

include ex1.dat;
include ex2.dat;

Pyomo is sensitive to the order of execution of data commands, since data com-
mands can redefine set and parameter values. The include command respects
this data ordering; all data commands in the included file are executed before the
remaining data commands in the current file are executed.

6.7 Data Namespaces

The namespace keyword is not a data command, but instead it is used to structure
the specification of Pyomo’s data commands. Specifically, a namespace declaration
is used to group data commands and to provide a group label. Consider the following
data command file:

set C := 1 2 3 ;

namespace ns1
{

set C := 4 5 6 ;
}

namespace ns2
{

set C := 7 8 9 ;
}

This data file defines two namespaces: ns1 and ns2 that initialize a set C. By
default, data commands contained within a namespace are ignored during model
construction; when no namespaces are specified, the set C has values 1,2,3. When
namespace ns1 is specified, then set C values are overridden with the set 4,5,6.
See Section 5.5.2 for an example of how namespaces are selected with the pyomo
command.

118 6 Data Command Files

6.8 Discussion

Pyomo data commands are processed with Pyomo’s DataPortal class. Thus,
there is a direct correspondence between the set, param and table commands
and the data formats supported by the load method in the DataPortal class.

The close correspondence between the set and param data commands in
AMPL and Pyomo allows many AMPL models to be reformulated with Pyomo
commands without additional changes to the data specification. Although other
AMPL data commands have not been supported in Pyomo, we have attempted to
retain similar functionality. For example, the AMPL table command is not di-
rectly supported, but the load command supports a subset of its functionality with
a simpler syntax.

The syntax for Pyomo’s data commands also differ from from AMPL’s syntax
in order to support additional functionality. For example, namespaces are used to
allow the specification of alternate data sets. This construct is particularly useful for
defining scenario data for stochastic programming models (e.g., see Chapter 10).

We expect support of data command files to be a core feature of Pyomo in the
future. This command language simplifies loading data from relational tables (e.g.,
databases). Although this can be done directly within Python scripts, Pyomo data
command files simplify the construction and analysis of abstract models, which is a
core feature of Pyomo.

Part II

Advanced Features and Extensions

Chapter 7

Nonlinear Programming with Pyomo

Abstract This chapter describes the nonlinear programming capabilities of Py-
omo. It presents the nonlinear expressions and functions that are supported, and it
provides some tips for formulating and solving nonlinear programming problems.
Pyomo makes use of the interface provided by the AMPL Solver Library to pro-
vide efficient expression evaluation and automatic differentiation. Use of the AMPL
Solver Library means that any AMPL-enabled solver should be usable as a solver
within the Pyomo framework. This chapter also provides several real-world exam-
ples to illustrate formulating and solving nonlinear programming problems.

7.1 Introduction

It is not possible to adequately represent many applications without modeling non-
linear relationships. Fortunately, Pyomo has the ability to represent general nonlin-
ear programming (NLP) problems in a straightforward manner. However, the solu-
tion of this class of problems presents several challenges that do not exist for linear
problems. For example, most modern, efficient NLP solvers require derivatives of
the constraints and the objective function. Since the functions are nonlinear, this
requires accurate numerical evaluation of these derivatives at a given trial point.
Additionally, in the case of non-convex problems, multiple local minima may ex-
ist (due to the shape of the objective function or the constraints), and specifying a
suitable starting point may be critical.

In Section 7.2, we describe the nonlinear expressions supported in Pyomo and
then illustrate how to build a basic nonlinear problem formulation within Pyomo.
In Section 7.3, we discuss the solver interface that allows for any AMPL-enabled
solver to be used with Pyomo. We also give a few tips to help with effectively
formulate nonlinear programming problems. Finally, we close this chapter with a
number of small, but real-world nonlinear programming examples.

121© Springer International Publishing AG 2017
W.E. Hart et al., Pyomo — Optimization Modeling in Python, Springer Optimization
and Its Applications 67, DOI 10.1007/978-3-319-58821-6_7

122 7 Nonlinear Programming with Pyomo

7.2 Building Nonlinear Programming Formulations

Pyomo supports the following general nonlinear programming formulation:

min
x

f (x)

s.t. c(x) = 0

dL ≤ d(x)≤ dU

xL ≤ x ≤ xU .

The allowable form of the objective function f (x), the vector of equality constraints
c(x), and the vector of inequality constraints d(x) depends entirely on the solver
that is selected to provide a solution. However, Pyomo has been tested with local
and global solvers that typically assume that these functions are continuous and
smooth, with continuous first (and possibly second) derivatives. The development
of nonlinear extensions for Pyomo has focused on this broad problem class.

7.2.1 Nonlinear Expressions

Formulating nonlinear optimization problems in Pyomo is no different from for-
mulating linear or mixed-integer problems. All the Pyomo modeling components
that we have described throughout the book are used in the same way (e.g.,
Objective, Constraint) except that they may include nonlinear expressions.

Table 7.1 lists the operators that are currently supported to formulate expressions,
with examples where x and y are Pyomo Var objects. In addition to these operators,
Pyomo supports a number of nonlinear functions as described in Table 7.2. These are
Pyomo implementations of nonlinear functions that can be used in Pyomo expres-
sions. However, Python nonlinear functions (e.g., from the math package) cannot
be used to build nonlinear expressions in Pyomo!

NOTE: If you import Python functions and attempt to build nonlinear expres-
sions, this can cause problems that are difficult to debug. For example, the fol-
lowing code will certainly cause problems since the functions from the math
package will be used instead of the functions from the pyomo package.

from pyomo.environ import *
from math import *

7.2 Building Nonlinear Programming Formulations 123

Operation Operator Example

multiplication * expr = model.x * model.y
division / expr = model.x / model.y
exponentiation ** expr = (model.x+2.0)**model.y
in-place multiplication1

*= expr *= model.x
in-place division2 /= expr /= model.x
in-place exponentiation3

**= expr **= model.x

1 The example given for in-place multiplication is equivalent to expr = expr * model.x.
2 The example given for in-place division is equivalent to expr = expr / model.x.
3 The example given for in-place exponentiation is equivalent to expr = expr ** model.x.

Table 7.1: Python operators that have been redefined to generate Pyomo expressions.

Operation Function Example

arccosine acos expr = acos(model.x)
hyperbolic arccosine acosh expr = acosh(model.x)
arcsine asin expr = asin(model.x)
hyperbolic arcsine asinh expr = asinh(model.x)
arctangent atan expr = atan(model.x)
hyperbolic arctangent atanh expr = atanh(model.x)
cosine cos expr = cos(model.x)
hyperbolic cosine cosh expr = cosh(model.x)
exponential exp expr = exp(model.x)
natural log log expr = log(model.x)
log base 10 log10 expr = log10(model.x)
sine sin expr = sin(model.x)
square root sqrt expr = sqrt(model.x)
hyperbolic sine sinh expr = sinh(model.x)
tangent tan expr = tan(model.x)
hyperbolic tangent tanh expr = tanh(model.x)

Table 7.2: Functions supported by Pyomo for the definition of nonlinear expressions.

7.2.2 The Rosenbrock Problem

In this section we present a short example to illustrate the formulation and solution
of a nonlinear Pyomo model. We consider the unconstrained minimization of the
two-variable Rosenbrock function, which is a classic problem that is frequently used
as an example for discussion of unconstrained nonlinear optimization algorithms
(see, for example, [65]). This problem is defined as

min
x,y

f (x,y) = (1− x)2 +100
(
y− x2)2

,

and the solution is in the bottom of the banana shaped valley at the point x=1 and
y=1 (See Figure 7.1).

124 7 Nonlinear Programming with Pyomo

Fig. 7.1: Contours of the Rosenbrock function f (x,y)=(1− x)2 +100
(
y− x2

)2. The minimum is
in the bottom of a banana shaped valley at the point x=1, y=1.

Consider the following Pyomo model for this problem:
rosenbrock.py
A Pyomo model for the Rosenbrock problem
from pyomo.environ import *

model = AbstractModel()
model.x = Var(initialize=1.5)
model.y = Var(initialize=1.5)

def rosenbrock(model):
return (1.0-model.x)**2 \

+ 100.0*(model.y - model.x**2)**2
model.obj = Objective(rule=rosenbrock, sense=minimize)

This example illustrates that defining a nonlinear model is really no different from
defining a linear model. The model creates two variables x and y and initializes
each of them to a value of 1.5. Notice that there is no need to provide any indication
that the variables will later appear in a nonlinear expression; this will be deduced by
Pyomo before solving the problem. The construction rule for the objective function
simply returns a nonlinear expression.

7.2 Building Nonlinear Programming Formulations 125

The following pyomo command solves this optimization problem using the
IPOPT solver:

pyomo solve --solver=ipopt --summary rosenbrock.py

This produces output similar to the following:
[0.00] Setting up Pyomo environment
[0.00] Applying Pyomo preprocessing actions
[0.00] Creating model
[0.00] Applying solver
[0.02] Processing results

Number of solutions: 1
Solution Information

Gap: None
Status: optimal
Function Value: 7.013645951336496e-25

Solver results file: results.yml

==
Solution Summary
==

Model unknown

Variables:
x : Size=1, Index=None

Key : Lower : Value : Upper : Fixed :
Stale : Domain

None : None : 1.0000000000008233 : None : False :
False : Reals
y : Size=1, Index=None

Key : Lower : Value : Upper : Fixed :
Stale : Domain

None : None : 1.0000000000016314 : None : False :
False : Reals

Objectives:
obj : Size=1, Index=None, Active=True

Key : Active : Value
None : True : 7.013645951336496e-25

Constraints:
None

[0.02] Applying Pyomo postprocessing actions
[0.02] Pyomo Finished

In this output, we see that the problem is correctly solved to a value of x=y=1.0,
with an objective value of essentially zero. While this example has only a single
nonlinear objective and two scalar variables, all the modeling components that were
discussed earlier can also be used.

126 7 Nonlinear Programming with Pyomo

NOTE: The pyomo command may result in output similar to the following:
[0.00] Setting up Pyomo environment
[0.00] Applying Pyomo preprocessing actions
[0.00] Creating model
[0.01] Applying solver
ERROR: Unexpected exception while running model

Rosenbrock.py
Problem constructing solver ‘ipopt‘

This occurs when the nonlinear solver (in this case ipopt) is not available on
the path.

7.3 Solving Nonlinear Programming Formulations

Pyomo enforces a clear separation between the modeling language used to formulate
the problem and the numerical package that is used to find a solution. Thus, an
appropriate nonlinear solver must be installed before Pyomo can be used to analyze
a nonlinear programming model.

7.3.1 Nonlinear Solvers

Nonlinear programming solvers require the modeling framework to evaluate the
nonlinear objective and constraints at candidate points in x. However, most efficient
nonlinear solvers also require evaluation of first (and often second) derivatives at
candidate points as well. Nevertheless, it is often problematic to require users to pro-
vide expressions for the first and second derivatives for objectives and constraints.
This transformation is both tedious and error prone. Because of this, many modeling
languages and solvers have interfaced with tools for automatic differentiation (AD).
AD tools can be used to provide accurate and efficient numerical evaluation of the
first and second derivatives without any user involvement.

Pyomo leverages the solver interface provided by the AMPL Solver Library
(ASL) for solving NLP problems [33]. There are a wealth of existing nonlinear pro-
gramming solvers that have already been interfaced with AMPL through the ASL.
By supporting all the ASL solvers, these packages are immediately available for use
with Pyomo without any need to develop another interface. Additionally, the ASL
provides efficient numerical evaluation of first and second derivative information.

Pyomo generates an .nl file that describes a nonlinear problem (complete with
expression trees for nonlinear objectives and constraints) [34]. These files are then
read by the solver packages through the interface provided in the ASL. The ASL
has methods that allow the solver to evaluate the objective, constraints, and deriva-
tive information as needed. Through the ASL interface, solvers also write solution

7.3 Solving Nonlinear Programming Formulations 127

values to a .sol file, which is read by Pyomo to obtain the solution. Further details
concerning these file formats are provided in Gay et al. [29, 33].

NOTE: Pyomo should work with any AMPL-based solver. Thus a number of
competitive, commercial and open-source packages can be used to solve Py-
omo models. A user must install an ASL solver and make sure that solver
is available on the path before running the pyomo command. In the exam-
ples in this chapter, we have made use of IPOPT[48], an open-source pack-
age available from the COIN-OR foundation. The instructions for obtain-
ing and installing the IPOPT solver are available at the COIN-OR website:
http://www.coin-or.org/Ipopt/.

7.3.2 Additional Tips for Nonlinear Programming

Effective formulation and solution of nonlinear programming problems can be sig-
nificantly more challenging than linear programming problems. In this section, we
provide a few basic tips to help with the formulation and solution of nonlinear pro-
gramming problems.

Variable Initialization

Solvers for nonlinear programming problems often require the initialization of prob-
lem variables. If initial values are not specified, then Pyomo assumes that the initial
values are zero. This can be problematic because of domain violations, as discussed
below. However, effective initialization is important for another reason.

For the general nonconvex case, nonlinear programming problems can, and of-
ten do, have multiple local solutions. While academic and commercial solvers do
exist that are mathematically guaranteed to find the global solution of a nonlinear
programming problem, large problems cannot be solved by state-of-the-art solvers.
Consequently, one is often forced to employ a solver that only provides a guarantee
of local optimality, for which it is often critical to initialize the problem near the
desired local solution.

Sometimes, the undesired local solutions are not physically meaningful, and a
sensible initialization with reasonable variable bounds is sufficient to ensure reli-
able progress to the desired solution. Other times, there may be several physically
reasonable local solutions. The development of good nonlinear problem formula-
tions often includes significant effort to provide a reasonable initialization strategy.

http://www.coin-or.org/Ipopt/

128 7 Nonlinear Programming with Pyomo

Undefined Evaluations

Several nonlinear functions are only well-defined over a specific domain (e.g.,
log(x) is only valid for x > 0). Therefore, the modeler must take care to ensure
that the problem formulation restricts the variable values to be within this domain.
This is usually accomplished by setting reasonable bounds and initial values on the
variables.

It is also important to note that many nonlinear solvers use first (and sometimes
second) derivative information for the objective function and the constraints. There-
fore, one must restrict the variables to be within a valid domain of the nonlinear
expressions and the derivatives of these expressions. For example, a common oc-
currence is to include sqrt(x) in an expression, along with the bounds x ≥ 0.
While

√
x is valid at x=0, its derivative, 1/

√
x is not. This must be considered when

setting reasonable variable bounds.
Finally, note that some nonlinear interior-point solvers (e.g., IPOPT) may relax

the variable bounds slightly before solving the problem. While this has proven to be
an effective strategy in most cases, this can sometimes cause a domain violation even
if the modeler has specified reasonable variable bounds. One may need to disable
this behavior in the solver or apply more conservative bounds.

Model Singularities and Problem Scaling

Many nonlinear programming solvers have restrictions on the constraints (called
constraint qualifications) that must be satisfied to guarantee convergence. In partic-
ular, it is often a good idea to ensure that the constraints are independent everywhere
within the solution domain (i.e., the set of active constraint gradients are linearly in-
dependent). Nocedal and Wright [65] discuss this issue further (see Chapter 12).

Unfortunately, a model that satisfies these restrictions in exact math may still ex-
hibit problems when solved numerically. If the model is ill-conditioned, then many
solvers can have difficulty converging or finding a solution efficiently. It is important
to scale the model as much as possible to provide a well-conditioned Jacobian and
Hessian. This can be as simple as linearly scaling the variables and the constraints.
However, in difficult cases, the model may need to be reformulated.

7.4 Nonlinear Programming Examples

In this section we present several additional nonlinear examples that illustrate the
capabilities of Pyomo.

7.4 Nonlinear Programming Examples 129

7.4.1 Variable Initialization for a Multimodal Function

The following example illustrates the importance of effective variable initialization.
Consider the minimization of the following multimodal function:

f (x) = (2− cosπx− cosπy)x2y2,

which has multiple local minima. The following Pyomo model for this problem
initializes the variables at x=y=0.25.

multimodal_init1.py
from pyomo.environ import *
from math import pi

model = ConcreteModel()
model.x = Var(initialize = 0.25, bounds=(0,4))
model.y = Var(initialize = 0.25, bounds=(0,4))

def multimodal(m):
return (2-cos(pi*m.x)-cos(pi*m.y)) * (m.x**2) * (m.y**2)

model.obj = Objective(rule=multimodal, sense=minimize)

We can solve this problem using the following pyomo command:
pyomo solve --solver=ipopt --summary multimodal_init1.py

IPOPT finds the solution that is close to our initial point
x=y=0.0178. However, if we change the problem and initialize the variables at
x=y=2.0,

model.x = Var(initialize = 2.0, bounds=(0,4))
model.y = Var(initialize = 2.0, bounds=(0,4))

then IPOPT finds a different local solution at x=y=2.0.

NOTE: Recall that we recommended not using the Python built-in math func-
tions since they can override the Pyomo functions suited for Pyomo expres-
sions. In particular,

from math import *

is very problematic since it will blindly override the internal Pyomo functions.
In the example above, we explicitly import pi from the math package, but not
any other functions. We could also have imported the Python math module
with a name to make sure we did not override any of the internal Pyomo math
functions:

import math as mt

130 7 Nonlinear Programming with Pyomo

7.4.2 Optimal Quotas for Sustainable Harvesting of Deer

Maintaining a healthy deer population relies on both effective habitat development
and a sustainable harvesting policy. Among most hunters there is high demand for
tags that allow them to take bucks. However, harvesting too many bucks within a
population can limit future population growth. The primary goal of this nonlinear
programming formulation is to determine an optimal policy for deer harvesting that
maximizes the value of the harvest while maintaining a strong and sustainable deer
population.

We consider a model adapted from Bailey [5] that describes the dynamics of the
deer population. The deer population in a given area can be divided into three sub-
populations: bucks, does, and fawns. Additionally, each year is divided into four
periods: winter, breeding season, summer, and harvest. The model describing the
population dynamics is based on the following assumptions:

• It is assumed that the sub-populations can be represented by continuous vari-
ables (i.e., population numbers are large enough that this is a good approxima-
tion).

• Each season, there is a reduction in the number of bucks, does, and fawns. This
reduction is assumed to be due to natural causes and is proportional to the size
of the sub-populations. This reduction is captured by specifying a fractional
survival rate that depends on the period (winter, breeding, summer, harvest) and
the sub-population in question (bucks, does, fawns).

• New fawns are born each year during the breeding season. Fawns are born from
does and older fawns according to a birth rate that depends on the available
amount of food. Half of them are assumed to be male and half are assumed to
be female. After surviving one year, half of the remaining fawns become bucks
and half become does.

• The total yearly food supply is constant and represents a constraint based on
habitat management.

• All harvesting is based on hunting. Hunting quotas can be set for each sub-
population, and these quotas are assumed to be completely filled (i.e., all hunters
are successful).

The complete derivation of the sub-population model is given in [5], resulting in the
following set of difference equations,

fy+1 = p1bry

(p2

10
fy + p3dy

)
+h f

y (7.1)

dy+1 = p4dy +
p5

2
fy −hd

y (7.2)

by+1 = p6by +
p5

2
fy −hb

y (7.3)

bry = 1.1+0.8
ps − cy

ps
(7.4)

cy = p7by + p8dy + p9 fy (7.5)

7.4 Nonlinear Programming Examples 131

where the value for parameters p1 through p9 are calculated from the various sur-
vival rates and food consumption rates. These values are given in Table 7.3. The
variables fy, dy, and by represent the number of fawns, does, and bucks in year y,
respectively. Likewise, h f

y , hd
y , and hb

y are the unknown numbers of fawns, does, and
bucks harvested in year y, respectively. The birth rate bry for does is described by
a nonlinear relationship where cy is the amount of food consumed by the deer (in
pounds) and ps is the total available supply of food (again in pounds).

parameter value parameter value

p1 0.88 p7 2700.0
p2 0.82 p8 2300.0
p3 0.92 p9 540.0
p4 0.84 w f 1.0
p5 0.73 wd 1.0
p6 0.87 wb 10.0
ps 700 000

Table 7.3: Parameter values used by the deer harvesting problem.

In the original reference, this set of difference equations was optimized in the
formulation over a period of 20 years so that a sustainable steady-state policy could
be deduced from the values at later years. Here, we instead include only one year
and add the constraint that the number of fawns, does, and bucks at year y+1 is
equal to those at y. This provides the same steady-state solution with a formulation
that is significantly smaller.

The objective is to maximize the value of the harvest, giving the following non-
linear programming formulation,

max wbhb
y +w f h f

y +wdhd
y (7.6)

fy = p1bry

(p2

10
fy + p3dy

)
+h f

y (7.7)

dy = p4dy +
p5

2
fy −hd

y (7.8)

by = p6by +
p5

2
fy −hb

y (7.9)

bry = 1.1+0.8
ps − cy

ps
(7.10)

cy = p7by + p8dy + p9 fy (7.11)
cy ≤ ps (7.12)

by ≥ 1
5
(0.4 fy +dy) (7.13)

where w f , wd and wb represent the value of harvesting a fawn, doe, and buck, re-
spectively. As can be seen in Table 7.3, it is assumed that the value of a buck tag
is 10 times the value of a doe or fawn tag. Equation (7.12) ensures that the amount

132 7 Nonlinear Programming with Pyomo

of consumed food cannot be more than the available supply, thereby restricting the
overall size of the population. Equation (7.13) ensures that the number of bucks is
large enough for effective, sustainable breeding.

The following abstract Pyomo model represents the optimal deer harvesting
problem:

DeerProblem.py
from pyomo.environ import *

model = AbstractModel()

model.p1 = Param();
model.p2 = Param();
model.p3 = Param();
model.p4 = Param();
model.p5 = Param();
model.p6 = Param();
model.p7 = Param();
model.p8 = Param();
model.p9 = Param();
model.ps = Param();

model.f = Var(initialize = 20, within=PositiveReals)
model.d = Var(initialize = 20, within=PositiveReals)
model.b = Var(initialize = 20, within=PositiveReals)

model.hf = Var(initialize = 20, within=PositiveReals)
model.hd = Var(initialize = 20, within=PositiveReals)
model.hb = Var(initialize = 20, within=PositiveReals)

model.br = Var(initialize=1.5, within=PositiveReals)

model.c = Var(initialize=500000, within=PositiveReals)

def obj_rule(amodel):
return 10*amodel.hb + amodel.hd + amodel.hf

model.obj = Objective(rule=obj_rule, sense=maximize)

def f_bal_rule(amodel):
return amodel.f == amodel.p1*amodel.br \

*(amodel.p2/10.0*amodel.f + amodel.p3*amodel.d) \
-amodel.hf

model.f_bal = Constraint(rule=f_bal_rule)

def d_bal_rule(amodel):
return amodel.d == amodel.p4*amodel.d \

+ amodel.p5/2.0*amodel.f - amodel.hd
model.d_bal = Constraint(rule=d_bal_rule)

def b_bal_rule(amodel):
return amodel.b == amodel.p6*amodel.b \

+ amodel.p5/2.0*amodel.f - amodel.hb
model.b_bal = Constraint(rule=b_bal_rule)

7.4 Nonlinear Programming Examples 133

def food_cons_rule(amodel):
return amodel.c == amodel.p7*amodel.b \

+ amodel.p8*amodel.d + amodel.p9*amodel.f
model.food_cons = Constraint(rule=food_cons_rule)

def supply_rule(amodel):
return amodel.c <= amodel.ps

model.supply = Constraint(rule=supply_rule)

def birth_rule(amodel):
return amodel.br == 1.1 + \

0.8*(amodel.ps - amodel.c)/amodel.ps
model.birth = Constraint(rule=birth_rule)

def minbuck_rule(amodel):
return amodel.b >= 1.0/5.0*(0.4*amodel.f + amodel.d)

model.minbuck = Constraint(rule=minbuck_rule)

The following data file represents the parameters in Table 7.3:
DeerProblem.dat
param p1 := 0.88;
param p2 := 0.82;
param p3 := 0.92;
param p4 := 0.84;
param p5 := 0.73;
param p6 := 0.87;
param p7 := 2700;
param p8 := 2300;
param p9 := 540;
param ps := 700000;

This problem can be optimized with the following command:
pyomo solve --solver=ipopt --summary DeerProblem.py \

DeerProblem.dat

This produces the following output:
[0.00] Setting up Pyomo environment
[0.00] Applying Pyomo preprocessing actions
[0.00] Creating model
[0.02] Applying solver
[0.04] Processing results

Number of solutions: 1
Solution Information
Gap: None
Status: optimal
Function Value: 659.224784497

Solver results file: results.json

==
Solution Summary
==

Model unknown

Variables:
f : Size=1, Index=None

134 7 Nonlinear Programming with Pyomo

Key : Lower : Value : Upper : Fixed : Stale : Domain
None : 0 : 189.605592667 : None : False : False : PositiveReals

d : Size=1, Index=None
Key : Lower : Value : Upper : Fixed : Stale : Domain
None : 0 : 196.006401042 : None : False : False : PositiveReals

b : Size=1, Index=None
Key : Lower : Value : Upper : Fixed : Stale : Domain
None : 0 : 54.3697276124 : None : False : False : PositiveReals

hf : Size=1, Index=None
Key : Lower : Value : Upper : Fixed : Stale : Domain
None : 0 : 0.0 : None : False : False : PositiveReals

hd : Size=1, Index=None
Key : Lower : Value : Upper : Fixed : Stale : Domain
None : 0 : 37.8450171569 : None : False : False : PositiveReals

hb : Size=1, Index=None
Key : Lower : Value : Upper : Fixed : Stale : Domain
None : 0 : 62.137976734 : None : False : False : PositiveReals

br : Size=1, Index=None
Key : Lower : Value : Upper : Fixed : Stale : Domain
None : 0 : 1.09999999201 : None : False : False : PositiveReals

c : Size=1, Index=None
Key : Lower : Value : Upper : Fixed : Stale : Domain
None : 0 : 700000.00699 : None : False : False : PositiveReals

Objectives:
obj : Size=1, Index=None, Active=True

Key : Active : Value
None : True : 659.224784497

Constraints:
f_bal : Size=1

Key : Lower : Body : Upper
None : 0.0 : 8.98742769095e-09 : 0.0

d_bal : Size=1
Key : Lower : Body : Upper
None : 0.0 : 1.42108547152e-14 : 0.0

b_bal : Size=1
Key : Lower : Body : Upper
None : 0.0 : 7.1054273576e-15 : 0.0

food_cons : Size=1
Key : Lower : Body : Upper
None : 0.0 : 2.91038304567e-11 : 0.0

supply : Size=1
Key : Lower : Body : Upper
None : None : 700000.00699 : 700000

birth : Size=1
Key : Lower : Body : Upper
None : 0.0 : 0.0 : 0.0

minbuck : Size=1
Key : Lower : Body : Upper
None : None : 9.34787180995e-09 : 0.0

[0.04] Applying Pyomo postprocessing actions
[0.04] Pyomo Finished

The solution summary shows that the quotas favor harvesting of bucks, but har-
vesting too many bucks would affect population growth. We can also see that the
residual for the minbuck constraint is essentially zero (meaning that this constraint
is active). Therefore, this constraint is restricting the number of bucks that can be
harvested. The optimal quota policy also allows for some harvesting of does, but no
harvesting of fawns.

Obviously, this solution is a function of the parameter values that determine the
value of fawns, does, and bucks in the objective function, as well as the parameters

7.4 Nonlinear Programming Examples 135

in model for the population dynamics. Because Pyomo is built with Python, it is
straightforward to develop a script that determines the optimal solution as a func-
tion of different parameter values, enabling more advanced analysis of the system.
Chapter 14 gives more discussion of this functionality.

7.4.3 Estimation of Infectious Disease Models

Effective widespread vaccination programs era have significantly minimized the im-
pact of many childhood diseases. However, childhood infectious diseases continue
to be a concern in developing countries, and outbreaks of new disease strains pose
challenges for public health policy makers. In this example, we simulate the out-
break of an infectious disease within a small community of 300 individuals (rep-
resenting, for example, a small school). We derive a basic model to describe the
spread of infection in the population and use a nonlinear programming formulation
to estimate key parameters in this model using the simulated data.

We use a standard discrete time compartment model to represent the system.
Individuals are separated into three compartments based on their status with respect
to the disease: susceptible (S), infected (I), or recovered (R). We assume that once
an individual has contracted the disease and recovered, they are immune from that
point forward (i.e., they do not return to the susceptible pool). The discrete time
model representing this systems is given by:

Ii =
β Iα

i−1Si−1

N
Si = Si−1 − Ii

These two difference equations describe the propagation of the disease in the pop-
ulation. As a generation-based model, it is assumed that all the individuals infected
at time i have recovered by time i+1. Ii and Si are the number of infected and sus-
ceptible individuals at time i, respectively. The population size is given by N, and β
and α are model parameters.

NOTE: Typically, we refer to parameters as fixed data in our optimization
problem. However, in this example, the parameters in our infectious disease
model are not yet known, and we want to estimate them from existing data.
Because of this, our model parameters β and α will become Pyomo variables
in the model (since they are to be estimated with the optimization).

In this example, we use least-squares to estimate the parameters from simulated
data. Let SI be the set of indices for the serial intervals. In our example, we are
estimating over one year, comprising 26 two-week serial intervals. The reported
cases (known input) are given by Ci, and the variable ε I

i is the residual between the
measured and calculated cases. The full problem formulation is given by,

136 7 Nonlinear Programming with Pyomo

min ∑
i∈SI

(
ε I

i
)2

Ii =
β Iα

i−1Si−1

N
∀ i ∈ SI \{1}

Si = Si−1 − Ii ∀ i ∈ SI \{1}
Ci = Ii + ε I

i

0 ≤ Ii, Si ≤ N

0.5 ≤ β ≤ 70
0.5 ≤ α ≤ 1.5

The following listing shows an abstract model for this nonlinear least-squares
estimation problem:

disease_estimation.py
from pyomo.environ import *

model = AbstractModel()

model.S_SI = Set(ordered=True)

model.P_REP_CASES = Param(model.S_SI)
model.P_POP = Param()

model.I = Var(model.S_SI, bounds=(0,model.P_POP), \
initialize=1)

model.S = Var(model.S_SI, bounds=(0,model.P_POP), \
initialize=300)

model.beta = Var(bounds=(0.05, 70))
model.alpha = Var(bounds=(0.5, 1.5))
model.eps_I = Var(model.S_SI, initialize=0.0)

def _objective(model):
return sum((model.eps_I[i])**2 for i in model.S_SI)

model.objective = Objective(rule=_objective, sense=minimize)

def _InfDynamics(model, i):
if i != 1:

return model.I[i] == (model.beta * model.S[i-1] * \
model.I[i-1]**model.alpha)/model.P_POP

return Constraint.Skip

model.InfDynamics = Constraint(model.S_SI, \
rule=_InfDynamics)

def _SusDynamics(model, i):
if i != 1:

return model.S[i] == model.S[i-1] - model.I[i]
return Constraint.Skip

model.SusDynamics = Constraint(model.S_SI, \
rule=_SusDynamics)

7.4 Nonlinear Programming Examples 137

def _Data(model, i):
return model.P_REP_CASES[i] == model.I[i]+model.eps_I[i]

model.Data = Constraint(model.S_SI, rule=_Data)

def pyomo_postprocess(options=None, instance=None, \
results=None):

print(’ ***’)
print(’ *** Optimal beta Value: %.2f’ % \

value(instance.beta))
print(’ *** Optimal alpha Value: %.2f’ % \

value(instance.alpha))
print(’ ***’)

The Pyomo data file that contains the data for an instance of this model is given by:
disease_estimation.dat

set S_SI := 1 2 3 4 5 6 7 8 9 10 11 12 13 14
15 16 17 18 19 20 21 22 23 24 25 26 ;

param P_POP := 300.000000;

param P_REP_CASES default 0.0 :=
1 1.000000
2 2.000000
3 4.000000
4 8.000000
5 15.000000
6 27.000000
7 44.000000
8 58.000000
9 55.000000
10 32.000000
11 12.000000
12 3.000000
13 1.000000

;

The following command can be used to optimize this model:
pyomo solve --solver=ipopt --logging=quiet \

disease_estimation.py disease_estimation.dat

Note that we have included a post-processing callback that produces output similar
to the following:

*** Optimal beta Value: 1.99

*** Optimal alpha Value: 1.00

We generated the data with β=2 and α=1, so these results look quite reasonable.

138 7 Nonlinear Programming with Pyomo

7.4.4 Reactor Design

Chemical reactors are often the most important unit operations in a chemical plant.
Reactors come in many forms, however two of the most common idealizations are
the continuously stirred tank reactor (CSTR) and the plug flow reactor. The CSTR
is often used in modeling studies, and it can be effectively modeled as a lumped
parameter system. In this example, we will consider the following reaction scheme
known as the Van de Vusse reaction:

A
k1→ B

k2→C

2A
k3→ D

A diagram of the system is shown in Figure 7.2, where F is the volumetric
flowrate. The reactor is assumed to be filled to a constant volume, and the mix-
ture is assumed to have constant density, so the volumetric flowrate into the reactor
is equal to the volumetric flowrate out of the reactor. Since the reactor is assumed to
be well-mixed, the concentrations in the reactor are equivalent to the concentrations
of each component flowing out of the reactor, given by cA, cB, cC, and cD.

Continuously
Stirred

Tank Reactor

F, cAf

F, cA, cB

cC , cD

Fig. 7.2: Continuously stirred tank reactor system producing desired product B, and undesired
products C, and D from A.

Consider the following reactor problem that was adapted from Bequette [9]. The
goal is to produce product B from a feed containing reactant A. If we design a reactor
that is too small, we will obtain insufficient conversion of A to the desired product
B. However, given the above reaction scheme, if the reactor is too large (e.g., too
much reaction is allowed to occur), a significant amount of the desired product B
will be further reacted to form the undesired product C. Therefore, our goal in this
exercise will be to solve for the optimal reactor volume that produces the maximum
outlet concentration for product B.

The steady-state mole balances for each of the four components are given by,

7.4 Nonlinear Programming Examples 139

0 =
F
V

cA f − F
V

cA − k1cA −2k3c2
A

0 =−F
V

cB + k1cA − k2cB

0 =−F
V

cC + k2cB

0 =−F
V

cD + k3c2
A

The known parameters for the system are,

cA f = 10
gmol
m3 k1=

5
6

min−1 k2=
5
3

min−1 k3=
1

6000
m3

mol min
.

Since the volumetric flowrate F always appears as the numerator over the reactor
volume V , it is common to consider this ratio as a single variable, called the space-
velocity (sv). Our optimization formulation will seek to find the space-velocity that
maximizes the outlet concentration of the desired product B.

The following is a concrete model for the reactor design problem:
import pyomo.environ
from pyomo.core import *

create the concrete model
model = ConcreteModel()

set the data (native python data)
k1 = 5.0/6.0 # minˆ-1
k2 = 5.0/3.0 # minˆ-1
k3 = 1.0/6000.0 # mˆ3/(gmol min)
caf = 10000.0 # gmol/mˆ3

create the variables
model.sv = Var(initialize = 1.0, within=PositiveReals)
model.ca = Var(initialize = 5000.0, within=PositiveReals)
model.cb = Var(initialize = 2000.0, within=PositiveReals)
model.cc = Var(initialize = 2000.0, within=PositiveReals)
model.cd = Var(initialize = 1000.0, within=PositiveReals)

create the objective
model.obj = Objective(expr = model.cb, sense=maximize)

create the constraints
model.ca_bal = Constraint(expr = (0 == model.sv * caf \

- model.sv * model.ca - k1 * model.ca \
- 2.0 * k3 * model.ca ** 2.0))

model.cb_bal = Constraint(expr=(0 == -model.sv * model.cb \
+ k1 * model.ca - k2 * model.cb))

model.cc_bal = Constraint(expr=(0 == -model.sv * model.cc \
+ k2 * model.cb))

140 7 Nonlinear Programming with Pyomo

model.cd_bal = Constraint(expr=(0 == -model.sv * model.cd \
+ k3 * model.ca ** 2.0))

This can be solved with the following command:
pyomo solve --solver=ipopt --summary --stream-solver ReactorDesign.py

The following output is produced:
[0.00] Setting up Pyomo environment
[0.00] Applying Pyomo preprocessing actions
[0.00] Creating model
[0.00] Applying solver

**
This program contains Ipopt, a library for large-scale nonlinear optimization.
Ipopt is released as open source code under the Eclipse Public License (EPL).

For more information visit http://projects.coin-or.org/Ipopt
**

This is Ipopt version 3.12.3, running with linear solver ma27.

Number of nonzeros in equality constraint Jacobian...: 11
Number of nonzeros in inequality constraint Jacobian.: 0
Number of nonzeros in Lagrangian Hessian.............: 5

Total number of variables............................: 5
variables with only lower bounds: 5

variables with lower and upper bounds: 0
variables with only upper bounds: 0

Total number of equality constraints.................: 4
Total number of inequality constraints...............: 0

inequality constraints with only lower bounds: 0
inequality constraints with lower and upper bounds: 0

inequality constraints with only upper bounds: 0

iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
0 -2.0000000e+03 7.50e+03 6.25e-01 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0
1 -1.0801475e+03 5.54e+02 2.46e+00 -1.0 1.39e+03 - 5.54e-01 1.00e+00h 1
2 -1.0763574e+03 8.86e+01 1.87e+02 -1.0 3.66e+02 - 9.31e-01 1.00e+00h 1
3 -1.0727252e+03 1.07e+01 5.26e+00 -1.0 9.35e+01 - 9.71e-01 1.00e+00h 1
4 -1.0726714e+03 4.01e+00 1.22e-01 -1.0 6.03e+01 - 9.68e-01 1.00e+00h 1
5 -1.0724371e+03 3.44e-04 2.93e-05 -2.5 4.19e-01 - 1.00e+00 1.00e+00h 1
6 -1.0724372e+03 1.63e-08 3.93e-09 -3.8 3.85e-03 - 1.00e+00 1.00e+00h 1
7 -1.0724372e+03 5.46e-11 2.70e-11 -5.7 2.24e-04 - 1.00e+00 1.00e+00h 1
8 -1.0724372e+03 4.55e-13 3.56e-14 -8.6 2.78e-06 - 1.00e+00 1.00e+00h 1

Number of Iterations....: 8

(scaled) (unscaled)
Objective...............: -1.0724372001086319e+03 -1.0724372001086319e+03
Dual infeasibility......: 3.5606115145031445e-14 3.5606115145031445e-14
Constraint violation....: 4.5474735088646414e-14 4.5474735088646412e-13
Complementarity.........: 2.5059065225790179e-09 2.5059065225790179e-09
Overall NLP error.......: 2.5059065225790179e-09 2.5059065225790179e-09

Number of objective function evaluations = 9
Number of objective gradient evaluations = 9
Number of equality constraint evaluations = 9
Number of inequality constraint evaluations = 0
Number of equality constraint Jacobian evaluations = 9
Number of inequality constraint Jacobian evaluations = 0
Number of Lagrangian Hessian evaluations = 8
Total CPU secs in IPOPT (w/o function evaluations) = 0.002
Total CPU secs in NLP function evaluations = 0.000

EXIT: Optimal Solution Found.

Ipopt 3.12.3: Optimal Solution Found
[0.07] Processing results

Number of solutions: 1
Solution Information
Gap: None
Status: optimal
Function Value: 1072.43720011

Solver results file: results.yml

==
Solution Summary
==

Model unknown

http://projects.coin-or.org/Ipopt

7.4 Nonlinear Programming Examples 141

Variables:
sv : Size=1, Index=None

Key : Lower : Value : Upper : Fixed : Stale : Domain
None : 0 : 1.34381176107 : None : False : False : PositiveReals

ca : Size=1, Index=None
Key : Lower : Value : Upper : Fixed : Stale : Domain
None : 0 : 3874.25886723 : None : False : False : PositiveReals

cb : Size=1, Index=None
Key : Lower : Value : Upper : Fixed : Stale : Domain
None : 0 : 1072.43720011 : None : False : False : PositiveReals

cc : Size=1, Index=None
Key : Lower : Value : Upper : Fixed : Stale : Domain
None : 0 : 1330.09353341 : None : False : False : PositiveReals

cd : Size=1, Index=None
Key : Lower : Value : Upper : Fixed : Stale : Domain
None : 0 : 1861.60519963 : None : False : False : PositiveReals

Objectives:
obj : Size=1, Index=None, Active=True

Key : Active : Value
None : True : 1072.43720011

Constraints:
ca_bal : Size=1

Key : Lower : Body : Upper
None : 0.0 : 0.0 : 0.0

cb_bal : Size=1
Key : Lower : Body : Upper
None : 0.0 : -2.27373675443e-13 : 0.0

cc_bal : Size=1
Key : Lower : Body : Upper
None : 0.0 : 0.0 : 0.0

cd_bal : Size=1
Key : Lower : Body : Upper
None : 0.0 : -4.54747350886e-13 : 0.0

[0.07] Applying Pyomo postprocessing actions
[0.07] Pyomo Finished

There are a few important things to notice. First, the --stream-solver op-
tion is used to display the output produced by IPOPT while solving the problem. In
many nonlinear examples, when the solver fails to find a solution or the behavior is
unexpected, this output can often provide valuable information to correct the issue.
In this case, the solver is successful at finding the optimal solution. Second, we also
added the --summary option to print the solution to the screen after solving the
problem. In this output, we see that the optimal space-velocity is sv=1.34, giving
an outlet concentration for B of cb=1072.

We can further verify this solution using the following Python script:
from pyomo.environ import *

create the concrete model
model = ConcreteModel()

set the data (native python data)
k1 = 5.0/6.0 # minˆ-1
k2 = 5.0/3.0 # minˆ-1
k3 = 1.0/6000.0 # mˆ3/(gmol min)
caf = 10000.0 # gmol/mˆ3

create the variables
model.sv = Var(initialize = 1.0, within=PositiveReals)
model.ca = Var(initialize = 5000.0, within=PositiveReals)
model.cb = Var(initialize = 2000.0, within=PositiveReals)
model.cc = Var(initialize = 2000.0, within=PositiveReals)
model.cd = Var(initialize = 1000.0, within=PositiveReals)

create the objective

142 7 Nonlinear Programming with Pyomo

model.obj = Objective(expr = model.cb, sense=maximize)

create the constraints
model.ca_bal = Constraint(expr = (0 == model.sv * caf \

- model.sv * model.ca - k1 * model.ca \
- 2.0 * k3 * model.ca ** 2.0))

model.cb_bal = Constraint(expr=(0 == -model.sv * model.cb \
+ k1 * model.ca - k2 * model.cb))

model.cc_bal = Constraint(expr=(0 == -model.sv * model.cc \
+ k2 * model.cb))

model.cd_bal = Constraint(expr=(0 == -model.sv * model.cd \
+ k3 * model.ca ** 2.0))

run the sequence of square problems
solver = SolverFactory(’ipopt’)
model.sv.fixed = True
sv_values = [1.0 + v * 0.05 for v in range(1, 20)]
print(" %s %s" % (str(’sv’.rjust(10)), str(’cb’.rjust(10))))
for sv_value in sv_values:

model.sv = sv_value
solver.solve(model)
print(" %s %s" %(str(model.sv.value).rjust(10),\

str(model.cb.value).rjust(15)))

This script fixes the value of the space-velocity variable, and it solves the square
problem repeatedly for different values of the space-velocity. We print a table of
space-velocity versus the outlet concentration of B. Notice the new scripting com-
mands at the end of the model definition that loop over the different space-velocity
values and obtain the solution of the series of square problems.

This script can be executed simply using the python command, producing the
following tabular results where we can see that the solution we obtained does in fact
correspond to the local optimum:

sv cb
1.05 1060.84692138
1.1 1064.77717388

1.15 1067.78673119
1.2 1069.97476354

1.25 1071.42857143
1.3 1072.22525762

1.35 1072.43312302
1.4 1072.11283896

1.45 1071.31843739
1.5 1070.09815137

1.55 1068.49513205
1.6 1066.54806288

1.65 1064.29168809
1.7 1061.75726893

1.75 1058.97297921
1.8 1055.96424923

7.4 Nonlinear Programming Examples 143

1.85 1052.75406573
1.9 1049.36323446

1.95 1045.81061049

This example illustrates the scripting capabilities of Pyomo. See Chapter 14 for
more scripting examples and further description of these capabilities.

Chapter 8

Structured Modeling with Blocks

Abstract This chapter documents how to express hierarchically-structured models
using Pyomo’s Block component. Many models contain significant hierarchical
structure; that is, they are composed of repeated groups of conceptually related
modeling components. Pyomo allows the modeler to define fundamental building
blocks, and then construct the overall problem by connecting these building blocks
together in an object-oriented manner. In this chapter, we describe the fundamen-
tal Block component along with common examples of its use, including repeated
components and managing model scope.

8.1 Introduction

Optimization solvers typically rely on getting a model in a standardized form. For
example, linear solvers accept models built on a standard form similar to:

min cT x
s.t. Ax ≤ b

x ≥ 0
.

Here, the variables are lumped together into a single vector x, and constraints are
represented in simplified matrix form. While this form is convenient for algorithms
that directly manipulate these matrices, it is not an easy form for a modeler to gener-
ate, manipulate, or debug. Algebraic Modeling Languages (AMLs) directly address
this challenge by allowing modelers to provide distinguishing names to modeling
components (e.g., variables or constraints) and to define the model over index sets.
Since models are often composed of repeated mathematical expressions, this allows
the expression of large models with relatively few lines of code, which are also
easier to document, understand, modify, and debug.

As models become larger and more complex, however, we often want to carry
this concept further and group variables and constraints that are conceptually re-

145© Springer International Publishing AG 2017
W.E. Hart et al., Pyomo — Optimization Modeling in Python, Springer Optimization
and Its Applications 67, DOI 10.1007/978-3-319-58821-6_8

146 8 Structured Modeling with Blocks

lated. That is, not that the constraints are connected by a common expression gen-
erator, but rather that the variables and constraints describe a certain (often phys-
ical) concept. For example, the group of variables and constraints could represent
the operating behavior of an electric generator (ramp-up limits, ramp-down limits,
cost curves) or chemical process equipment like a distillation column (the mass,
equilibrium, and energy balance equations). Other examples include multi-period
optimization problems where the same fundamental model is repeated over many
time periods, or stochastic programming problems where the same basic model is
repeated over different scenarios with different parameters. In Pyomo, we use the
Block component to support object-oriented construction of hierarchical models
like those described above.

The Block component is a container for organizing groups of variables and
constraints, and it can contain any number of named Pyomo components in exactly
the same way that models do. In fact, ConcreteModel and AbstractModel
inherit from the Block component. Additionally, Block components can them-
selves be added to a model, allowing for hierarchical model construction based on
the fundamental building blocks in an object-oriented manner.

This concept is illustrated in Figure 8.1, which provides an overview of the capa-
bilities of blocks for an electrical grid model. Individual block can be used to define
the necessary variables and equations to describe generator, bus, and transmission
line elements. Then, these can be put together to form the entire (single time period)

Fig. 8.1: The electrical grid model can be composed from individual blocks representing the
generators, buses, and transmission lines. Furthermore, a multi-period model can be constructed in
a hierarchical manner treating the electrical grid model as its fundamental building blocks.

8.2 Block structures 147

electrical grid model. This model could be solved on its own. However, it can also
be used as a building block for a higher-level model, like the multi-period planning
problem illustrated in this figure. In this manner, Pyomo can represent very complex
models out of smaller, less complex pieces.

8.2 Block structures

The Pyomo Block component can be treated in much the same way as a model:
components are added directly to the block as attributes. Since Block components
may contain any other Pyomo modeling components, including other blocks, it is
possible to construct arbitrarily nested hierarchical structures.

When discussing the block hierarchy, we adopt terminology from tree structures
and refer to the block one level up the hierarchy (toward the top-level Model) as
the parent, and all components contained within the block as children. The root of
the block hierarchy is always the current model. The following code snippet shows
some basic capabilities of blocks.

model = ConcreteModel()
model.x = Var()
model.P = Param(initialize=5)
model.S = RangeSet(model.P)
model.b = Block()
model.b.I = RangeSet(model.P)
model.b.x = Var(model.b.I)
model.b.y = Var(model.S)
model.b.b = Block()
model.b.b.x = Var()

Here, model contains a variable (model.x), a parameter (model.P), and a set
(model.S). It also contains a Block given by model.b. This block itself con-
tains a set, two variables, and yet another block. You will notice that components in
a block can reference components in other blocks or in the parent model. The range
set model.b.I is defined using a parameter from the parent model, the variable
model.b.x uses a set from it’s same block, and the variable model.b.y ref-
erences a set from the parent block. Components and expressions can reference
components from anywhere within the hierarchy.

NOTE: Within one block, Pyomo supports references to components from any
other block. However, it is generally good object-oriented practice to only ref-
erence components from the current or lower levels in the hierarchy. This pro-
motes resusability of your blocks within other models without strong assump-
tions about the structure of the owning or parent blocks.

Note that, in the above code snippet, each block defines its own component
namespace; that is, while component names must be unique within a single block,

148 8 Structured Modeling with Blocks

they do not need to be globally unique. This allows blocks to be constructed safely
without concerns about definitions in one block colliding or interfering with defini-
tions in other blocks. This also leads to all components having two forms of a name:
the local name (which may be repeated elsewhere in the model) and a globally-
unique fully qualified name that includes the names of the parent block(s) separated
by periods:

print(model.x.local_name) # x
print(model.x.name) # x
print(model.b.x.local_name) # x
print(model.b.x.name) # b.x
print(model.b.b.x.local_name) # x
print(model.b.b.x.name) # b.b.x

Block components can also be created and populated, and then later added to a
model. The code below shows creation of a block that is later added to a model. It
also illustrates how a parent model can make use of sets and parameters contained
in a child block.

new_b = Block()
new_b.x = Var()
new_b.P = Param(initialize=5)
new_b.I = RangeSet(10)

model = ConcreteModel()
model.b = new_b
model.x = Var(model.b.I)

NOTE: In this example, the Block object new b is not initialized when it is
declared. In this manner, it is abstract until it is added to the ConcreteModel
object. At that point, it is immediately initialized. Similarly, when a Block
object is added to an AbstractModel, it is initialized when the entire model
object is initialized.

8.3 Blocks as Indexed Components

As with other Pyomo components, Block components may also be indexed and
initialized using a construction rule. However, block construction rules follow a
slightly different convention: the first argument to to a block rule is the block to
be populated rather than the owning block. Within a rule, one can either directly
populate the block by assigning components to it, or create a new block and return
it from the rule.

8.4 Construction Rules within Blocks 149

The following example illustrates the use of construction rules for blocks:
model = ConcreteModel()
model.P = Param(initialize=3)
model.T = RangeSet(model.P)

def xyb_rule(b, t):
b.x = Var()
b.I = RangeSet(t)
b.y = Var(b.I)
b.c = Constraint(expr = b.x == 1.0 - sum(b.y[i] for i \

in b.I))
model.xyb = Block(model.T, rule=xyb_rule)

Here, we have defined an indexed Block component that will contain one block for
each element of the set model.T. In the construction rule, we create two variables
and a set. These construction rules are just as flexible as those for other components.
The set b.I created in this example is different for each block, and consequently
the variable b.y is also a different length for each block. This illustrates another
feature of blocks. Often, different blocks contain exactly the same model structure,
just with different data. However, it is also possible to construct blocks that have a
different structure based on data available in the construction rule.

We can extend this example to print the constraint body c for each of the blocks:
for t in model.T:

print(model.xyb[t].c.body)

The constraints expand appropriately and they contain fully qualified names of vari-
ables in each of the subblocks:

-1.0 + xyb[1].x + xyb[1].y[1]
-1.0 + xyb[2].x + xyb[2].y[1] + xyb[2].y[2]
-1.0 + xyb[3].x + xyb[3].y[1] + xyb[3].y[2] + xyb[3].y[3]

8.4 Construction Rules within Blocks

Like model objects, blocks can contain other modeling components, including Set
and Param objects. Additionally, blocks can be initialized with modeling compo-
nents which themselves are constructed by rules. However, doing this exposes a
subtelty of Pyomo component construction rules.

Up to this point we have frequently referred to the first argument of a compo-
nent rule as the “model”, but this is not completely correct. The first argument to
component rules is actually the owning block of the component being constructed.
For “flat” models (models without any sub-blocks), the owning block is indeed the
model, but this will not be the case for hierarchically-structured models. If needed,
the model object can be obtained from the owning block using the aforementioned
model() method.

150 8 Structured Modeling with Blocks

For example, consider the following declaration of the xyb block from the pre-
vious example:

def xyb_rule(b, t):
b.x = Var()
b.I = RangeSet(t)
b.y = Var(b.I, initialize=1.0)
def _b_c_rule(_b):

return _b.x == 1.0 - sum(_b.y[i] for i in _b.I)
b.c = Constraint(rule=_b_c_rule)

model.xyb = Block(model.T, rule=xyb_rule)

In this example, the xyb block includes a constraint that is defined with the rule
b c rule. The owning block b passed to this rule is the same as b. However,

Pyomo the b variable is defined locally. This allows the rule to be used even if the
owning block is constructed in a different manner.

Since the owning block (or model) is NOT passed into a block construction
rule, the modeler may need another mechanism to access components on the par-
ent or other blocks in the hierarchy. The component methods parent block and
model facilitate moving up the block hierarchy. The parent block() of any
component or component data object is the block that the component is attached
to. The model() method on any component or component data object returns the
block object at the root of the tree.

8.5 Extracting values from hierarchical models

While blocks support a convenient mechanism for expressing composite concepts
(e.g., a time-period, a scenario), this results in some data becoming more spread out
across your model. However, we can access the components by explicitly iterating
over blocks and their associated variables:

for t in model.xyb:
for i in model.xyb[t].y:
print("%s %f" % (model.xyb[t].y[i], \

value(model.xyb[t].y[i])))

Additionally, Pyomo’s slice notation can be used to dynamically extract a subset of
the blocks or variable values:

for y in model.xyb[:].y[:]:
print("%s %f" % (y, value(y)))

8.6 Blocks Example: Optimal Multi-Period Lot-Sizing

We now demonstrate a complete model based on blocks using a well-known multi-
period optimization problem for optimal lot-sizing [43]. Our goal in the lot-sizing

8.6 Blocks Example: Optimal Multi-Period Lot-Sizing 151

problem is to determine the optimal production Xt in each time period t ∈ T given
known demands dt . We let yt be a binary variable indicating whether or not there
is any production in time period t, and assume that there is a fixed cost ct if we
decide to produce in time period t. The inventory It at the end of each time period is
a function of the previous inventory, production, and sales,

It = It−1 +Xt −dt .

If we allow the inventory to be negative (meaning we did not meet demands and we
have a backlog of orders), we can represent the inventory as It=I+t −I−t where we
restrict both I+t and I−t to be non-negative. Here, I+t represents inventory that we are
holding, and I−t represents a backlog of orders. We can assign an inventory holding
cost and a shortage cost (cost of keeping a backlog) as h+t and h−t respectively.

With this description, the optimization problem can be formulated as,

min ∑
t∈T

ctyt +h+t I+t +h−t I−t (LS.1)

s.t. It = It−1 +Xt −dt ∀t ∈ T (LS.2)

It = I+t − I−t ∀t ∈ T (LS.3)
Xt ≤ Pyt ∀t ∈ T (LS.4)

Xt , I+t , I−t ≥ 0 ∀t ∈ T (LS.5)
yt ∈ {0,1} ∀t ∈ T (LS.6)

where Equation (LS.4) is a constraint that only allows production in time period t if
the indicator variable yt=1. The data for our problem is provided in Table 8.1.

Table 8.1: Data for Lot-Sizing Problem

Parameter Description Value

c fixed cost of production 4.6
I+0 initial value of positive inventory 5.0
I−0 initial value of backlogged orders 0.0
h+ cost (per unit) of holding inventory 0.7
h− shortage cost (per unit) 1.2
P maximum production amount (big-M value) 5
d demand [5,7,6.2,3.1,1.7]

152 8 Structured Modeling with Blocks

8.6.1 A Formulation Without Blocks

We can formulate the lot-sizing problem without blocks using the Pyomo code
shown below.

from pyomo.environ import *

model = ConcreteModel()
model.T = RangeSet(5) # time periods

i0 = 5.0 # initial inventory
c = 4.6 # setup cost
h_pos = 0.7 # inventory holding cost
h_neg = 1.2 # shortage cost
P = 5.0 # maximum production amount

demand during period t
d = {1: 5.0, 2:7.0, 3:6.2, 4:3.1, 5:1.7}

define the variables
model.y = Var(model.T, domain=Binary)
model.x = Var(model.T, domain=NonNegativeReals)
model.i = Var(model.T)
model.i_pos = Var(model.T, domain=NonNegativeReals)
model.i_neg = Var(model.T, domain=NonNegativeReals)

define the inventory relationships
def inventory_rule(m, t):

if t == m.T.first():
return m.i[t] == i0 + m.x[t] - d[t]

return m.i[t] == m.i[t-1] + m.x[t] - d[t]
model.inventory = Constraint(model.T, rule=inventory_rule)

def pos_neg_rule(m, t):
return m.i[t] == m.i_pos[t] - m.i_neg[t]

model.pos_neg = Constraint(model.T, rule=pos_neg_rule)

create the big-M constraint for the production indicator variable
def prod_indicator_rule(m,t):

return m.x[t] <= P*m.y[t]
model.prod_indicator = Constraint(model.T, rule=prod_indicator_rule)

define the cost function
def obj_rule(m):

return sum(c*m.y[t] + h_pos*m.i_pos[t] + h_neg*m.i_neg[t] for t in m.T)
model.obj = Objective(rule=obj_rule)

solve the problem
solver = SolverFactory(’glpk’)
solver.solve(model)

print the results
for t in model.T:

print(’Period: {0}, Prod. Amount: {1}’.format(t, value(model.x[t])))

This example uses standard Pyomo syntax as discussed in early chapters of the
book. If we were considering the lot-sizing problem over a single time period only,
our variable declarations would have looked like,

8.6 Blocks Example: Optimal Multi-Period Lot-Sizing 153

define the variables
model.y = Var(domain=Binary)
model.x = Var(domain=NonNegativeReals)
model.i = Var()
model.i_pos = Var(domain=NonNegativeReals)
model.i_neg = Var(domain=NonNegativeReals)

In the multi-period case, we have the same fundamental variables and constraints
defined over each time period. Here, the variable declarations looked like,

define the variables
model.y = Var(model.T, domain=Binary)
model.x = Var(model.T, domain=NonNegativeReals)
model.i = Var(model.T)
model.i_pos = Var(model.T, domain=NonNegativeReals)
model.i_neg = Var(model.T, domain=NonNegativeReals)

If we were considering a multi-period and multi-scenario problem (e.g., a stochastic
programming formulation for lot-sizing under uncertainty), the variable declarations
would have looked like,

define the variables
model.y = Var(model.T, model.S, domain=Binary)
model.x = Var(model.T, model.S, domain=NonNegativeReals)
model.i = Var(model.T, model.S,)
model.i_pos = Var(model.T, model.S, domain=NonNegativeReals)
model.i_neg = Var(model.T, model.S, domain=NonNegativeReals)

In each of these examples, when we add new complexity, or an additional layer
onto the model, we add a new index to the variables and constraints. This approach
is very common in the field of operations research. Unfortunately, it requires that
we completely redefine the model with each new layer, and it does not readily sup-
port construction of hierarchical models with reusable code. Blocks provide another
approach that easily supports model reuse in an object-oriented fashion.

8.6.2 A Formulation With Blocks

We now show how blocks can be used to write this problem. Most of the constraints
in the multi-period lot-sizing problem are defined over t ∈ T , and they can be log-
ically grouped together by time. Pyomo allows us to define blocks, each with the
variables and constraints for a single time period only, and then link them together
to form the overall model.

Considering the lot-sizing problem again, we can define the variables and con-
straints within a rule that provides a block for a single period of the lot-sizing prob-
lem:

154 8 Structured Modeling with Blocks

create a block for a single time period
def lotsizing_block_rule(b, t):

define the variables
b.y = Var(domain=Binary)
b.x = Var(domain=NonNegativeReals)
b.i = Var()
b.i0 = Var()
b.i_pos = Var(domain=NonNegativeReals)
b.i_neg = Var(domain=NonNegativeReals)

define the constraints
b.inventory = Constraint(expr=b.i == b.i0 + b.x - d[t])
b.pos_neg = Constraint(expr=b.i == b.i_pos - b.i_neg)
b.prod_indicator = Constraint(expr=b.x <= P * b.y)

model.lsb = Block(model.T, rule=lotsizing_block_rule)

Here, we are defining the variables and constraints for a single time period t
within the rule. The Block component is then indexed over the set model.T, and
the declaration constructs a lot-sizing block for each entry in model.T. Therefore,
our model object now contains a block for each time period t. All that remains
is to provide constraints linking the blocks together (setting the initial inventory
of one block equal to the final inventory of the previous block), and to define the
objective function over all the blocks. The full code listing for the block version of
the multi-period lot-sizing problem is shown below.

from pyomo.environ import *

model = ConcreteModel()
model.T = RangeSet(5) # time periods

i0 = 5.0 # initial inventory
c = 4.6 # setup cost
h_pos = 0.7 # inventory holding cost
h_neg = 1.2 # shortage cost
P = 5.0 # maximum production amount

demand during period t
d = {1: 5.0, 2:7.0, 3:6.2, 4:3.1, 5:1.7}

create a block for a single time period
def lotsizing_block_rule(b, t):

define the variables
b.y = Var(domain=Binary)
b.x = Var(domain=NonNegativeReals)
b.i = Var()
b.i0 = Var()
b.i_pos = Var(domain=NonNegativeReals)
b.i_neg = Var(domain=NonNegativeReals)

define the constraints
b.inventory = Constraint(expr=b.i == b.i0 + b.x - d[t])
b.pos_neg = Constraint(expr=b.i == b.i_pos - b.i_neg)
b.prod_indicator = Constraint(expr=b.x <= P * b.y)

8.6 Blocks Example: Optimal Multi-Period Lot-Sizing 155

model.lsb = Block(model.T, rule=lotsizing_block_rule)

link the inventory variables between blocks
def i_linking_rule(m, t):

if t == m.T.first():
return m.lsb[t].i0 == i0

return m.lsb[t].i0 == m.lsb[t-1].i
model.i_linking = Constraint(model.T, rule=i_linking_rule)

construct the objective function over all the blocks
def obj_rule(m):

return sum(c*m.lsb[t].y + h_pos*m.lsb[t].i_pos + \
h_neg*m.lsb[t].i_neg for t in m.T)

model.obj = Objective(rule=obj_rule)

solve the problem
solver = SolverFactory(’glpk’)
solver.solve(model)

print the results
for t in model.T:

print(’Period: {0}, Prod. Amount: {1}’.format(t, \
value(model.lsb[t].x)))

This formulation is small, so it can be difficult to see the benefit of blocks. How-
ever, as models grow in size and complexity, this object-oriented modeling concept
allows us to define small pieces of the model in self-contained chunks of code, and
then build the large model by pulling these pieces together. This example was se-
lected in part because it is a heavily studied, classic multi-stage inventory model.
One can easily imagine extensions to the model that include additional constraints
and costs. In fact, many such models have appeared in the academic literature and
in practical application. In large models, it is common to write methods or classes
that define individual blocks and reuse that code within several different, high-level
optimization formulations.

Chapter 9

Generalized Disjunctive Programming

Abstract This chapter documents how to express and solve Generalized Disjunctive
Programs (GDPs). GDP models provide a structured approach for describing logical
relationships in optimization models. We show how Pyomo blocks provide a natural
base for representing disjuncts and forming disjunctions, and we how to solve GDP
models through the use of automated problem transformations.

9.1 Introduction

A common feature of many discrete optimization problems is the selection among
two or more discrete choices. These decisions imply additional restrictions on the
feasible problem space. For example, a semi-continuous variable either has value
zero or must be above a given value. This can be expressed algebraically as either
x = 0 or L ≤ x ≤U , where L > 0 and U is allowed to be infinite. When U is finite,
this property can be enforced by defining a boolean indicator variable y and defining
the following constraints:

Ly ≤ x

x ≤ Uy

When U is infinite, then the second equation is replaced with a so-called “Big-M”
equation:

x ≤ My

for a value M that is sufficiently big to not limit the space of feasible solutions.
This approach to formulating a switching decision can be generalized to switch

between different groups of constraints. For example, consider the Unit Commit-
ment Problem, where the goal of the optimization problem is to determine the min-
imal cost schedule for turning on and off a fleet of generators in order to meet

157© Springer International Publishing AG 2017
W.E. Hart et al., Pyomo — Optimization Modeling in Python, Springer Optimization
and Its Applications 67, DOI 10.1007/978-3-319-58821-6_9

158 9 Generalized Disjunctive Programming

expected demand. In this case, a generator can exist in one of several states: on, off,
starting up, and shutting down. Selecting a particular state implies additional con-
straints on the generator operation. If a generator is “on”, then the output power is
bounded between the minimum (nonzero) and maximum power levels. In contrast,
when the generator is “off”, the output power must be 0. Further, the output power
in any time period must be within “ramp limits” of output power in the previous
time period.

Common implementations of these state selection rules express all the constraints
and relax them based on the state variables using so-called “Big-M” terms:

Powerg,t ≤ MaxPowerg ·GenOng,t (9.1)
Powerg,t ≥ MinPowerg ·GenOng,t (9.2)

Powerg,t ≤ Powerg,t−1 +RampU pLimitg +Mg · (1−GenOng,t) (9.3)
Powerg,t ≥ Powerg,t−1 −RampDownLimitg −Mg · (1−GenOng,t) (9.4)

Powerg,t ≤ MaxPowerg · (1−GenO f fg,t) (9.5)
Powerg,t−1 ≤ ShutDownRampLimitg +MaxPowerg · (1−GenO f fg,t) (9.6)
Powerg,t ≤ StartU pRampLimitg +MaxPowerg · (1−GenStartU pg,t) (9.7)

GenOng,t +GenO f fg,t +GenStartU pg,t = 1 (9.8)
GenOng,t ≤ GenOng,t−1 +GenStartU pg,t−1 (9.9)

GenStartU pg,t ≤ GenO f fg,t−1 (9.10)
GenOng,t ,GenO f fg,t ,GenStartU pg,t ,GenShutDowng,t ∈ {0,1} (9.11)

Powerg,t ∈ (0,MaxPowerg) (9.12)

This approach to formulating a switching decision has two significant limitations.
First, the relationships between the binary selection variable and the corresponding
constraints that the binary variable selects is somewhat obfuscated. Second, the use
of “Big-M” relaxations is only one of several possible approaches to formulating
the problem. By hard-coding that relaxation into your model, you are effectively
precluding the possibility of exploring alternative approaches (like a convex hull
relaxation) without significant effort rewriting the model.

Generalized Disjunctive Programming [75] represents an alternative approach to
representing problems with significant logical structure. It generalizes the concepts
of Disjunctive Programming [6] for integer linear problems to also include nonlin-
ear systems. The canonical GDP model [55] augments the objective, variables, and
constraints of a typical MI(N)LP with Boolean variables, disjunctions, and logical
constraints:

9.2 Modeling GDP in Pyomo 159

min ∑
k∈K

ck + f (x) (9.13)

s.t. r(x)≤ 0 (9.14)

∨
j∈Jk

⎡
⎣ Yjk

g jk(x)≤ 0
ck = γ j,k

⎤
⎦ ∀k ∈ K (9.15)

Ω(Y) = True (9.16)
x ≥ 0,ck ≥ 0,Yjk ∈ {True,False} (9.17)

In this framework, the logical decisions are represented as sets of disjunctions
(Eqn. 9.15) and logical constraints (Eqn. 9.16). Each disjunction contains a num-
ber of terms (disjuncts) connected by an “OR” operator. Each disjunct contains a
Boolean indicator variable (Y) and a set of constraints that is only enforced when Y
is True. Additional constraints that enforce logical relationships among the indicator
variables are imposed through Eqn. 9.16.

Recasting the generator state model above as a GDP yields the following dis-
junction:⎡

⎣ Yg,on
MinPowerg ≤ Powerg,t ≤ MaxPowerg

−RampDownLimitg ≤ Powerg,t −Powerg,t−1 ≤ RampU pLimitg

⎤
⎦

∨⎡
⎣ Yg,o f f

Powerg,t = 0
Powerg,t−1 ≤ ShutDownRampLimitg

⎤
⎦

∨[
Yg,startup

Powerg,t ≤ StartU pRampLimitg

]
(9.18)

models discussed above: the relationship between the switching variable and the
constraints it implies is now explicit in the model structure, and the model is no
longer locked into any particular relaxation.

9.2 Modeling GDP in Pyomo

The pyomo.gdp package extends the core modeling environment to represent
GDP models. This package defines two new constructs: the disjunct and the dis-
junction. We implement these constructs as two new components in pyomo.gdp:
Disjunct and Disjunction, respectively. The components are imported from
the GDP package:

from pyomo.gdp import *

A disjunct is logically a container for the indicator variable and the corresponding

This modeling approach directly addresses the two limitations of typical MI(N)LP

160 9 Generalized Disjunctive Programming

constraints. Here we see the power of the hierarchical modeling approach enabled
by the Block component: the Disjunct component is naturally derived from the
Block class. As with blocks, Disjunct components may be arbitrarily indexed
and initialized through rules. In addition, they may contain any Pyomo modeling
component, including not only Sets, Params, Vars, and Constraints, but also
Blocks, Disjuncts, and Disjunctions. The only thing that the Disjunct
class adds to the normal Block implementation is the implicit and automatic defi-
nition of the disjunct’s indicator variable.

For our generator state example, the requisite three disjuncts are declared as fol-
lows:

model.NumTimePeriods = Param()
model.GENERATORS = Set()
model.TIME = RangeSet(model.NumTimePeriods)

model.MaxPower = Param(model.GENERATORS, \
within=NonNegativeReals)

model.MinPower = Param(model.GENERATORS, \
within=NonNegativeReals)

model.RampUpLimit = Param(model.GENERATORS, \
within=NonNegativeReals)

model.RampDownLimit = Param(model.GENERATORS, \
within=NonNegativeReals)

model.StartUpRampLimit = Param(model.GENERATORS, \
within=NonNegativeReals)

model.ShutDownRampLimit = Param(model.GENERATORS, \
within=NonNegativeReals)

def Power_bound(m,g,t):
return (0, m.MaxPower[g])

model.Power = Var(model.GENERATORS, model.TIME, \
bounds=Power_bound)

def GenOn(b, g, t):
m = b.model()
b.power_limit = Constraint(

expr=m.MinPower[g] <= m.Power[g,t] <= m.MaxPower[g])
if t == m.TIME.first():

return
b.ramp_limit = Constraint(

expr=-m.RampDownLimit[g] <= m.Power[g,t] - \
m.Power[g,t-1] <= m.RampUpLimit[g])

model.GenOn = Disjunct(model.GENERATORS, model.TIME, \
rule=GenOn)

def GenOff(b, g, t):
m = b.model()
b.power_limit = Constraint(

expr=m.Power[g,t] == 0)
if t == m.TIME.first():

return
b.ramp_limit = Constraint(

expr=m.Power[g,t-1] <= m.ShutDownRampLimit[g])

9.3 Solving GDP models 161

model.GenOff = Disjunct(model.GENERATORS, model.TIME, \
rule=GenOff)

def GenStartUp(b, g, t):
m = b.model()
b.power_limit = Constraint(

expr=m.Power[g,t] <= m.StartUpRampLimit[g])
model.GenStartup = Disjunct(model.GENERATORS, model.TIME, \

rule=GenStartUp)

Note that while the disjuncts may be completely self-contained, with their own local
variables, parameters, and constraints, they may also reference Pyomo components
outside their immediate scope.

The Disjunction component is used to associate a set of disjuncts. A dis-
junction is similar to a constraint, in that it can be indexed and defined through
rules. However, unlike a Constraint, where the rule returns a relational ex-
pression, the rule for a Disjunction must return a list of Disjuncts. Sub-
sequent model transformations will convert the Disjunction component and
generate the binding constraint across the disjuncts. While the general form of a
GDP relates the disjuncts using an “OR” operator, the vast majority of models ac-
tually expect an “exclusive OR” operator. This is so common that the default be-
havior of the Disjunction component is to generate the “exclusive OR” rela-
tionship. Modelers may, however, specify the original “OR” operator by providing
exclusive=False to the Disjunction declaration.

The disjunction for our generator state example is an exclusive OR, and can be
expressed in Pyomo using:

def bind_generators(m,g,t):
return [m.GenOn[g,t], m.GenOff[g,t], m.GenStartup[g,t]]

model.bind_generators = Disjunction(model.GENERATORS, \
model.TIME, rule=bind_generators)

Finally, we must be able to express any additional logical constraints on the
disjunct indicator variables. In Pyomo, we support this by explicitly forming con-
straints over the implicit binary indicator var variables. Again, for the gener-
ator state example, we can express the switching rules as:

def bind_generators(m,g,t):
return [m.GenOn[g,t], m.GenOff[g,t], m.GenStartup[g,t]]

model.bind_generators = Disjunction(model.GENERATORS, \
model.TIME, rule=bind_generators)

9.3 Solving GDP models

None of the optimization solvers currently interfaced with Pyomo can directly parse
or manipulate disjunctive models. However, Pyomo includes the capability to trans-
form a disjunctive model into an equivalent MI(N)LP model by relaxing the dis-

162 9 Generalized Disjunctive Programming

junctive constraints. Pyomo’s GDP package provides two automated relaxations:
the first relaxes the disjunctive constraints by adding so-called “Big-M” terms (re-
covering the original model structure from Section 9.1) and the second explicitly
generates the convex hull of the individual disjunctions.

9.3.1 Big-M transformation

The Big-M transformation performs a constraint-by-constraint relaxation of the
original disjunctive model. This preserves the size (number of variables and con-
straints) of the original model at the expense of possibly generating a weak contin-
uous relaxation.

This transformation begins by recasting each disjunct as a normal block, modi-
fying the individual constraints to add the Big-M term. For equality constraints and
2-sided inequality constraints (those with both upper and lower bounds), the trans-
formation duplicates the constraint as two one-sided inequality constraints before
relaxing each. The values of the M parameters can be specified through a BigM
Suffix placed on the Disjunct. When transforming linear constraints over
bounded variables, this value can be estimated automatically by the transformation.

Finally, the Big-M transformation recasts the Disjunctions by converting
them into their equivalent algebraic form; that is either

∑
k∈K

dk.indicator var = 1 (9.19)

for exclusive disjunctions (the default), or

∑
k∈K

dk.indicator var ≥ 1 (9.20)

for non-exclusive disjunctions.
The transformation name gdp.bigm is used to apply the Big-M transformation.

9.3.2 Convex hull transformation

The convex hull transformation relaxes the original disjunctive model by generating
the set of constraints defining the convex hull of each disjunction. This increases the
overall size of the model (both the number of variables and constraints), but gives a
tighter continuous relaxation than the Big-M transformation. However, all variables
must be bounded to apply the convex hull disjunction.

The transformation follows the procedure of Balas [6] for linear disjunctions and
Lee and Grossmann [55] (with modifications from Sawaya and Grossmann [77]) for

9.4 A mixing problem with semi-continuous variables 163

nonlinear disjunctions. In both cases, variables appearing in any constraint within
a disjunction are disaggregated by replacing them with a disjunct-specific variable,
and then adding an additional constraint to the model that equates the original vari-
able with the sum of the disaggregated variables.

Finally, the convex hull transformation recasts the Disjunctions by convert-
ing them into their equivalent algebraic form; that is either

∑
k∈K

dk.indicator var = 1 (9.21)

for exclusive disjunctions (the default), or

∑
k∈K

dk.indicator var ≥ 1 (9.22)

for non-exclusive disjunctions.
The transformation name gdp.chull is used to apply the convex hull transfor-

mation.

9.4 A mixing problem with semi-continuous variables

The following model illustrates a simple mixing problem with three semi-continuous
variables (x1, x2, x3) which represent quantities that are mixed to meet a volumetric
constraint. In this simple example, the number of sources is minimized:

scont.py
from pyomo.environ import *
from pyomo.gdp import *

L = [1,2,3]
U = [2,4,6]
index = [0,1,2]

model = ConcreteModel()
model.x = Var(index, within=Reals, bounds=(0,20))

Each disjunct is a semi-continuous variable
x[k] == 0 or L[k] <= x[k] <= U[k]
def d_rule(block, k, i):

m = block.model()
if i == 0:

block.c = Constraint(expr=m.x[k] == 0)
else:

block.c = Constraint(expr=L[k] <= m.x[k] <= U[k])
model.d = Disjunct(index, [0,1], rule=d_rule)

There are three disjunctions
def D_rule(block, k):

model = block.model()

164 9 Generalized Disjunctive Programming

return [model.d[k,0], model.d[k,1]]
model.D = Disjunction(index, rule=D_rule)

Minimize the number of x variables that are nonzero
model.o = Objective(expr=sum(model.d[k,1].indicator_var \

for k in index))

Satisfy a demand that is met by these variables
model.c = Constraint(expr=sum(model.x[k] for k in index) \

>= 7)

There are three ways to apply either the Big-M or convex hull transformation to
solve this model:

1. through the pyomo command line,
2. through a scripting interface, or
3. through a BuildAction.

On the pyomo command line, the --transform command line option is used to
apply a transformation:

pyomo solve scont.py --transform gdp.bigm --solver=glpk

The equivalent approach when developing custom scripts is to create the trans-
formation before applying it to the model:

xfrm = TransformationFactory(’gdp.bigm’)
xfrm.apply_to(model)

solver = SolverFactory(’glpk’)
status = solver.solve(model)

Finally, there are situations where you will want to inject transformations into
models that are generated and manipulated in environments other than the pyomo
command or custom scripts (e.g., the runph script). In this case, you can trigger
the transformation by adding a BuildAction to the model:

def transform_gdp(m):
xfrm = TransformationFactory(’gdp.bigm’)
xfrm.apply_to(m)

model.transform_gdp = BuildAction(rule=transform_gdp)

Chapter 10

Stochastic Programming Extensions

Abstract This chapter describes PySP, a stochastic programming extension to
Pyomo. PySP enables the expression of stochastic programming problems as ex-
tensions of deterministic models, which are often formulated first. To formulate a
stochastic program in PySP, the user specifies both the deterministic base model and
the scenario tree with associated uncertain parameters in Pyomo. Given these two
models, PySP provides two paths for solving the corresponding stochastic program.
The first alternative involves PySP writing the extensive form and invoking a stan-
dard deterministic solver. For more complex stochastic programs, PySP includes
an implementation of Rockafellar and Wets’ Progressive Hedging algorithm, which
provides an effective heuristic for approximating general multi-stage, mixed-integer
stochastic programs. By leveraging the combination of a high-level programming
language and the embedding of the base deterministic model in that language, PySP
provides completely generic and highly configurable solver implementations.

10.1 Introduction

From the earliest days of using computers for optimization problems, it was rec-
ognized that input data is uncertain in most real-world decision problems [19]. In
cases where information becomes available in a few decision stages, stochastic pro-
gramming is an appropriate and widely studied mathematical framework to express
and solve uncertain decision problems [10, 52, 54, 80, 84]. Stochastic programming
allows the user to explicitly account for the fact that some of the data is uncertain
and that the values of parameters may become known over time.

The pyomo.pysp package can express a stochastic program in a generic man-
ner. To express a stochastic program in PySP, the user specifies both the determinis-
tic base model and the scenario tree with associated uncertain parameters in Pyomo.
This separation of deterministic and stochastic problem components is similar to the
mechanism proposed in SMPS [11, 32].

Once the deterministic and scenario tree models have been specified, PySP pro-

165© Springer International Publishing AG 2017
W.E. Hart et al., Pyomo — Optimization Modeling in Python, Springer Optimization
and Its Applications 67, DOI 10.1007/978-3-319-58821-6_10

166 10 Stochastic Programming Extensions

vides two paths for solving the corresponding stochastic program. The first alterna-
tive involves PySP writing the extensive form and optionally invoking a determinis-
tic (mixed-integer) linear solver. For more complex stochastic programs, a generic
implementation of Rockafellar and Wets’ Progressive Hedging algorithm [76] can
be applied. The development of PySP has focused on the use of Progressive Hedg-
ing as an effective heuristic for approximating general multi-stage, mixed-integer
programs. PySP provides a completely generic and highly configurable solver im-
plementation for Progressive Hedging by leveraging the combination of a high-level
programming language and the embedding of the base deterministic model in that
language. Additionally, PySP leverages Pyomo to provide access to the full range
of solvers supported by Pyomo. Consequently, a broad range of model types can be
addressed by PySP.

10.2 Stochastic Programming: Definition and Notation

PySP is designed to express and solve stochastic programming problems, which
we now briefly introduce. Readers with no background in stochastic programming
will probably need to make use of more comprehensive introductions to both the
theoretical foundations and the range of potential applications that can be found in
Birge and Leouvaux [10], King and Wallace [54], Shapiro et al. [80], and Wallace
and Ziema [84].

We concern ourselves with stochastic optimization problems where uncertain
parameters (data) can be represented by a finite set of scenarios S , each of which
specifies both (1) a full set of random variable realizations and (2) a corresponding
probability of occurrence. The random variables in question specify the evolution
of uncertain parameters over time. We index the scenario set by s and refer to the
probability of occurrence of s (or, more accurately, a realization “near” scenario s)
as Pr(s). Let the number of scenarios be given by |S |. The source of these scenarios
does not concern us at this point, although we observe that they are frequently ob-
tained via simulation or formed from historical data or expert opinions. We assume
that the decision process of interest consists of a sequence of discrete time stages,
the set of which is denoted T . We index T by t, and denote the number of time
stages by |T |.

Because PySP can support some types of nonlinear constraints and objectives
as well as linear and mixed-integer problems, we develop the notation in a fairly
abstract way. For each scenario s and time stage t, t ∈ {1, . . . , |T |}, we are given
a function fs(·). For each t ∈ {1, . . . , |T |}, the decision variables in a stochastic
program consist of a set of the vectors x(s, t), one vector for each scenario s ∈ S .
Let X(s) be (x(s,1), . . . ,x(s,T)). We will use X as shorthand for the entire solution
system of x vectors, i.e., X = x(1,1), . . . ,x(|S |, |T |).

If we were prescient enough to know which scenario s ∈ S would be ultimately
realized, our optimization objective would be to minimize

10.3 Modeling in PySP 167

fs(X(s)) (Ps)

subject to the constraint
X(s) ∈ Ωs.

We use Ωs as an abstract notation to express all constraints for scenario s, includ-
ing requirements that some decision vector elements are discrete or more general
requirements.

We must obtain solutions that do not require knowledge of the future and that
will be feasible independent of which scenario is ultimately realized. We refer to
solution systems that satisfy constraints for all scenarios as admissible and we use
implementable if for all pairs of scenarios, s and s′, that are indistinguishable up
to time t, xi(s, t ′) = xi(s′, t ′) for every relevant index i. We refer to the set of all
implementable solution systems as NS for a given set of scenarios, S .

To achieve admissible and implementable solutions, the expected-value mini-
mization problem then becomes:

min ∑
s∈S

Pr(s) fs(X(s)) (P)

subject to

X(s) ∈ Ωs, s ∈ S

X ∈ NS .

Formulation (P) is known as a stochastic mathematical program. If all decision vari-
ables are continuous, we refer to the problem simply as a stochastic program. If
some of the decision variables are discrete, we refer to the problem as a stochastic
mixed-integer program. We observe that, lacking prescience, only solutions that are
implementable are useful. Solutions that are not admissible, on the other hand, may
have some value because while some constraints may represent laws of physics,
others may be violated slightly without serious consequence.

In practice, the parameter uncertainty in stochastic programs is often encoded
via a scenario tree, in which every node is associated with a time stage and a list
of scenarios whose parameter values are indistinguishable up to that time. We refer
to the terminal nodes as leaf nodes. Scenario trees are discussed in more detail in
Section 10.3.2.

10.3 Modeling in PySP

Pyomo allows non-specialists to easily formulate and solve deterministic mathemat-
ical programming models, avoiding the need for a deep understanding of the under-
lying algorithmic technologies that are used to analyze these models; PySP strives
to provide similar capabilities for stochastic mathematical programming models.

168 10 Stochastic Programming Extensions

In this section, we discuss the use of Pyomo to formulate and express stochastic
programs in PySP. As a motivating example, we consider the well-known Birge and
Louveaux [10] “farmer” stochastic program. Mirroring several other approaches to
modeling stochastic programs (e.g., see Thénié et al. [82]), we require the speci-
fication of two related components: the base model and the scenario tree. In Sec-
tion 10.3.1 we discuss the specification of the deterministic reference model and
some associated test data; Section 10.3.2 details the model and data underlying PySP
scenario tree specification. The mechanisms for specifying uncertain parameter data
are discussed in Section 10.3.3.

10.3.1 The Deterministic Reference Model

The starting point for developing a stochastic programming model in PySP is
the specification of an abstract reference model, which describes the deterministic
multi-stage problem for an arbitrary, canonical scenario. The reference model does
not make use of, or describe, any information relating to parameter uncertainty or the
scenario tree. Typically, it is simply the model that would be used in single-scenario
analysis, i.e., the model that is commonly developed before stochastic aspects of
an optimization problem are considered. PySP expects that the reference model –
specified in Pyomo – is contained in a file named ReferenceModel.py, but this
can be changed by specifying the path to the file (including the file name) instead of
just the directory when specifying the model directory.

The following is the complete reference model file for Birge and Louveaux’s
farmer problem:

ReferenceModel.py
#
Farmer: rent out version has a scalar root node var
note: this will minimize

from pyomo.environ import *

Model
model = AbstractModel()

Parameters
model.CROPS = Set()

model.TOTAL_ACREAGE = Param(within=PositiveReals)

model.PriceQuota = Param(model.CROPS, within=PositiveReals)

model.SubQuotaSellingPrice = Param(model.CROPS, \
within=PositiveReals)

def super_quota_selling_price_validate (model, value, i):
return model.SubQuotaSellingPrice[i] >= \

10.3 Modeling in PySP 169

model.SuperQuotaSellingPrice[i]

model.SuperQuotaSellingPrice = Param(model.CROPS, \
validate=super_quota_selling_price_validate)

model.CattleFeedRequirement = Param(model.CROPS, \
within=NonNegativeReals)

model.PurchasePrice = Param(model.CROPS, \
within=PositiveReals)

model.PlantingCostPerAcre = Param(model.CROPS, \
within=PositiveReals)

model.Yield = Param(model.CROPS, within=NonNegativeReals)

Variables
model.DevotedAcreage = Var(model.CROPS, bounds=(0.0, \

model.TOTAL_ACREAGE))

model.QuantitySubQuotaSold = Var(model.CROPS, bounds=(0.0, \
None))

model.QuantitySuperQuotaSold = Var(model.CROPS, \
bounds=(0.0, None))

model.QuantityPurchased = Var(model.CROPS, bounds=(0.0, \
None))

Constraints

def ConstrainTotalAcreage_rule(model):
return summation(model.DevotedAcreage) <= \

model.TOTAL_ACREAGE

model.ConstrainTotalAcreage = \
Constraint(rule=ConstrainTotalAcreage_rule)

def EnforceCattleFeedRequirement_rule(model, i):
return model.CattleFeedRequirement[i] <= \

(model.Yield[i] * model.DevotedAcreage[i]) + \
model.QuantityPurchased[i] - \
model.QuantitySubQuotaSold[i] - \
model.QuantitySuperQuotaSold[i]

model.EnforceCattleFeedRequirement = \
Constraint(model.CROPS, \
rule=EnforceCattleFeedRequirement_rule)

def LimitAmountSold_rule(model, i):
return model.QuantitySubQuotaSold[i] + \

model.QuantitySuperQuotaSold[i] - (model.Yield[i] * \
model.DevotedAcreage[i]) <= 0.0

model.LimitAmountSold = Constraint(model.CROPS, \

170 10 Stochastic Programming Extensions

rule=LimitAmountSold_rule)

def EnforceQuotas_rule(model, i):
return (0.0, model.QuantitySubQuotaSold[i], \

model.PriceQuota[i])

model.EnforceQuotas = Constraint(model.CROPS, \
rule=EnforceQuotas_rule)

Stage-specific cost computations

def ComputeFirstStageCost_rule(model):
return summation(model.PlantingCostPerAcre, \

model.DevotedAcreage)

model.FirstStageCost = \
Expression(rule=ComputeFirstStageCost_rule)

def ComputeSecondStageCost_rule(model):
expr = summation(model.PurchasePrice, \

model.QuantityPurchased)
expr -= summation(model.SubQuotaSellingPrice, \

model.QuantitySubQuotaSold)
expr -= summation(model.SuperQuotaSellingPrice, \

model.QuantitySuperQuotaSold)
return expr

model.SecondStageCost = \
Expression(rule=ComputeSecondStageCost_rule)

PySP Auto-generated Objective

minimize: sum of StageCosts
#
An active scenario objective equivalent to that \

generated by PySP is
included here for informational purposes.
def total_cost_rule(model):

return model.FirstStageCost + model.SecondStageCost
model.Total_Cost_Objective = \

Objective(rule=total_cost_rule, sense=minimize)

The reference model is independent of any stochastic components of the prob-
lem; however, PySP does require that the objective cost component for each decision
stage of the stochastic program be assigned to a distinct Expression (a singleton
variable or an element of a variable array can also be used, but named Expression
components are preferred). See Section 4.8 for more information about named
Pyomo Expression components. In the reference model we simply label the
first and second stage cost Expression components as FirstStageCost and
SecondStageCost, respectively.

10.3 Modeling in PySP 171

The following is a data file for the farmer reference model:
above mean scenario

set CROPS := WHEAT CORN SUGAR_BEETS ;

param TOTAL_ACREAGE := 500 ;

no quotas on wheat or corn
param PriceQuota := WHEAT 100000 CORN 100000 SUGAR_BEETS

6000 ;

param SubQuotaSellingPrice := WHEAT 170 CORN 150
SUGAR_BEETS 36 ;

param SuperQuotaSellingPrice := WHEAT 0 CORN 0 SUGAR_BEETS
10 ;

param CattleFeedRequirement := WHEAT 200 CORN 240
SUGAR_BEETS 0 ;

can’t purchase beets (no real need, as cattle don’t eat
them)

param PurchasePrice := WHEAT 238 CORN 210 SUGAR_BEETS
100000 ;

param PlantingCostPerAcre := WHEAT 150 CORN 230 SUGAR_BEETS
260 ;

param Yield := WHEAT 3.0 CORN 3.6 SUGAR_BEETS 24 ;

Although Pyomo supports various data file formats, the example illustrates the use
of a data command file.

10.3.2 The Scenario Tree

The second step in developing a stochastic program in PySP is to specify the sce-
nario tree structure and associated parameter data. A PySP scenario tree supplies all
information concerning the time stages, the mapping of decision variables to time
stages, how various scenarios are temporally related to one another (i.e., scenario
tree nodes and their inter-relationships), and the probabilities of various scenarios.
As discussed below, the scenario tree does not directly specify uncertain parameter
values; rather, it specifies references to data files containing such data.

The scenario tree is defined by PySP with a scenario tree model, which itself
happens to be a Pyomo model (but users of PySP do not really need to know that).
The semantics for each of the parameters (or sets) indicated in the scenario tree
model file are as follows:

Stages An ordered set containing the names (specified as arbitrary strings) of the

172 10 Stochastic Programming Extensions

time stages. The order corresponds to the time order of the stages.
Nodes A set of the names (specified as arbitrary strings) of the nodes in the sce-

nario tree.
NodeStage An indexed parameter mapping node names to stage names. Each

node in the scenario tree must be assigned to a specific stage.
Children An indexed set mapping node names to sets of node names. For each

non-leaf node in the scenario tree, a set of child nodes must be specified. This
set implicitly defines the overall branching structure of the scenario tree. Using
this set, the parent nodes are computed internally by PySP. There can only be
one node in the scenario tree with no parents, i.e., the tree must be singly rooted.

ConditionalProbability An indexed parameter mapping node names to
their conditional probability, relative to their parent node. The conditional prob-
ability of the root node must be equal to 1, and for any node with children, the
conditional probabilities of the children must sum to 1. Numeric values must be
contained within the interval [0,1].

Scenarios An ordered set containing the names (specified as arbitrary strings)
of the scenarios. These names are used for two purposes: reporting and data
specification (see Section 10.3.3).

ScenarioLeafNode An indexed parameter mapping scenario names to their
leaf node name. This data facilitates linkage of the scenarios to their composite
nodes in the scenario tree.

StageVariables An indexed set mapping stage names to sets of variable names
in the reference model. The sets of variable names indicate variables that are
associated with the given stage. This implicitly defines the non-anticipativity
constraints that should be imposed when generating and/or solving the PySP
model.

StageDerivedVariables An indexed set mapping stage names to sets of
variable names in the reference model. The sets of variable names indicate
variables that are associated with the given stage that are derived from other
variables (i.e., auxiliary variables). This explicitly exempts these variables from
inclusion in anticipativity constraints.

ScenarioBasedData A boolean parameter specifying how the instances for
each scenario are to be constructed. A value of True, which is the default, in-
dicates that scenario data will be given in files that specify all data for each sce-
nario, even the data that are not stochastic. A value of False, indicates that the
data will be given in a file for each node of the scenario tree. See Section 10.3.3
for further details.

StageCost A parameter indexed by stages giving the Expression for costs in
each stage that is defined in the reference model.

The data that is used to instantiate these parameters and sets must be provided
in a file named ScenarioStructure.dat. The scenario tree structure specifi-
cation for the farmer problem is shown in the ScenarioStructure.dat data
command file:

10.3 Modeling in PySP 173

IMPORTANT - THE STAGES ARE ASSUMED TO BE IN TIME-ORDER.

set Stages := FirstStage SecondStage ;

set Nodes := RootNode
BelowAverageNode
AverageNode
AboveAverageNode ;

param NodeStage := RootNode FirstStage
BelowAverageNode SecondStage
AverageNode SecondStage
AboveAverageNode SecondStage ;

set Children[RootNode] := BelowAverageNode
AverageNode
AboveAverageNode ;

param ConditionalProbability := RootNode 1.0
BelowAverageNode 0.33333333
AverageNode 0.33333334
AboveAverageNode 0.33333333 ;

set Scenarios := BelowAverageScenario
AverageScenario
AboveAverageScenario ;

param ScenarioLeafNode :=
BelowAverageScenario BelowAverageNode
AverageScenario AverageNode
AboveAverageScenario AboveAverageNode ;

set StageVariables[FirstStage] := DevotedAcreage[*] ;

set StageVariables[SecondStage] := QuantitySubQuotaSold[*]
QuantitySuperQuotaSold[*]
QuantityPurchased[*] ;

param StageCost := FirstStage FirstStageCost
SecondStage SecondStageCost ;

This example illustrates how PySP provides a simple “wildcard” syntax to specify
subsets of indexed variables. The asterisk character is used to match all values in a
particular dimension of an indexed parameter. In more complex examples, variables
are typically indexed by time stage. In these cases, the wildcard syntax allows for
concise specification of the stage-to-variable mapping.

Finally, we observe that PySP makes no assumptions regarding the linkage be-
tween time stages and variable index structure. In particular, the time stage need not
explicitly be referenced within a variable’s index set. While this is often the case in
multi-stage formulations, the convention is not universal, e.g., as in the case of the
farmer problem.

174 10 Stochastic Programming Extensions

NOTE: When using PH, it is particularly important to declare variables that are
implied by other variables as StageDerivedVariables.

10.3.3 Scenario Parameter Specification

10.3.3.1 Abstract Models

For abstract models, the data files specifying the (deterministic and stochastic) pa-
rameters for each of the scenarios in a PySP model can be specified in one of two
ways. The simplest approach is “scenario-based”, in which each scenario is defined
by a separate data file that provides a complete parameter specification for the sce-
nario. If the scenario is named ScenarioX, then the corresponding data file for
the scenario must be named ScenarioX.dat. This approach is often expedient,
especially if the scenario data are generated via simulation, which is often conve-
nient in practice even though there is redundancy in this encoding of the model
parameters. Scenario-based data specification is the default behavior in PySP.

Node-based parameter specification is provided as an alternative to the default
scenario-based approach, principally to eliminate redundancy. With a node-based
specification, parameter data specific to each node in the scenario tree is specified
in a distinct data file. If the node is named NodeX, then the corresponding data file
for the node must be named NodeX.dat. To create a scenario instance, data for
all nodes associated with a scenario are accessed (via the ScenarioLeafNode
parameter in the scenario tree specification and the computed parent node link-
ages). Node-based parameter encoding eliminates redundancy, although typically
at the expense of a slightly more complex instance generation process. To enable
node-based scenario initialization, a user needs to simply add the following line to
ScenarioStructure.dat:

param ScenarioBasedData := False ;

In the case of the farmer problem, all parameters except for Yield are identical
across all scenarios. Consequently, these parameters can be placed in a file named
RootNode.dat. Then, files containing scenario-specific Yield parameter values
are specified for each second-stage leaf node in files with names:

• AboveAverageNode.dat
• AverageNode.dat
• BelowAverageNode.dat

The choice between node- and scenario-based data input is an aesthetic choice as
much as a computational one, or perhaps more so. Scenario-based method offers
the advantage that is very easy to solve any particular scenario instance using the
pyomo command for debugging purposes.

10.3 Modeling in PySP 175

10.3.3.2 Concrete Models

For concrete models, scenario data is provided by a
pysp instance creation callback function inside the
ReferenceModel.py file.

For example, the following code can be added to the ReferenceModel.py
for the farmer example.

#
Stochastic Data
#
Yield = {}
Yield[’BelowAverageScenario’] = \

{’WHEAT’:2.0,’CORN’:2.4,’SUGAR_BEETS’:16.0}
Yield[’AverageScenario’] = \

{’WHEAT’:2.5,’CORN’:3.0,’SUGAR_BEETS’:20.0}
Yield[’AboveAverageScenario’] = \

{’WHEAT’:3.0,’CORN’:3.6,’SUGAR_BEETS’:24.0}

def pysp_instance_creation_callback(scenario_name, \
node_names):

instance = model.clone()
instance.Yield.store_values(Yield[scenario_name])

return instance

This function is called for each of the scenarios specified in the
ScenarioStructure.dat file. The first argument to the function is the name
of the scenario and the second argument is the list of scenario tree node names for
the scenario. Note that if ScenarioBasedData is assigned the value True in
ScenarioStructure.dat it will be ignored for concrete models because the
scenarios are given as ConcreteModel instances. There is a great deal of flexi-
bility in how the scenario instances are created, but there must be a separate model
instance for each callback invocation.

In the farmer example, a single concrete model is constructed outside of the call-
back, which uses mutable Param components for the stochastic data. Each time the
callback is invoked the model is cloned (this is more efficient than constructing from
scratch), and the mutable model parameters are loaded with their scenario specific
data. In these examples, the data for the base model, plus the data for the scenarios
is provided by constants hard-coded in the model file; however, the data could have
been read from files using standard Python facilities.

Users of the phpyro solver manager should be aware that each
phsolverserver independently imports the model file into an isolated python
process. This means that it is possible that the callback will only be invoked over a
subset of the scenarios (within each process).

176 10 Stochastic Programming Extensions

10.4 Generating and Solving the Extensive Form

The most straightforward method to solve a stochastic program involves generating
the extensive form (also known as the deterministic equivalent) and then invoking
a standard deterministic (mixed-integer) programming solver. The extensive form
given as problem (P) in Section 10.2 completely specifies all scenarios and the cou-
pling non-anticipativity constraints at each node in the scenario tree. Although more
scalable solution techniques may be needed for large, real-world stochastic pro-
grams, the extensive form is usually the first method applied to solve a stochastic
program.

PySP provides the runef command to both generate and solve the extensive
form for a given stochastic program. The following are the primary command-line
options for this command:

--help
Display all command-line options, with brief descriptions.

--verbose
Display verbose output to the standard output stream, above and beyond the
usual status output. This generates a lot of output, so it is disabled by default.

--model-location=MODEL DIRECTORY
Specifies the directory in which the reference model (ReferenceModel.py)
is stored. The default is the current working directory. If a file name is also
supplied, that is used instead of ReferenceModel.py.

--scenario-tree-location=INSTANCE DIRECTORY
Specifies the directory in which the scenario structure
(ScenarioStructure.dat) and scenario data files are stored. The default
is the current working directory.

--output-file=OUTPUT FILE
Specifies the name of the output file to which the extensive form is written. The
default is efout.lp.

--solve
Directs the command to solve the extensive form after writing it. This is dis-

abled by default. To cause runef to invoke a solver, this option must be spec-
ified.

--solver=SOLVER TYPE
Specifies the type of solver for solving the extensive form, if a solve is re-
quested. The default is cplex because glpk does not support quadratic objec-
tives. Note that (glpk could be used in conjunction with
--linearize-nonbinary-penalty-terms.

--solver-options=SOLVER OPTIONS
Specifies solver options in keyword-value pair format, if a solve is requested.
These keywords and values are passed directly to the solver (perhaps with
dashes added by Pyomo). So for most MIP solvers, the mip gap can be set
using --solver-options= "mipgap=0.01 "

10.4 Generating and Solving the Extensive Form 177

Multiple options are separated by a space. Options that do not take an argument
should be specified with the equals sign followed by either a space or the end
of the string.
For example, to specify that the solver is GLPK, then to specify a mipgap of two
percent and the GLPK cuts option, use
--solver=glpk --solver-options="mipgap=0.02 cuts="
If there are multiple ”levels” to the keyword, as is the case for some Gurobi
and CPLEX options, the tokens are separated by underscore. For example, “mip
cuts all” would be specified as mip cuts all. For another example, to set the
solver to be CPLEX, then to set a mip gap of one percent and to specify ’y’ for
the sub-option “numerical” to the option “emphasis” use --solver=cplex
--solver-options="mipgap=0.001 emphasis numerical=y"

--output-solver-log
Specifies that the output of the solver is to be echoed to the standard output
stream. This is disabled by default. This is used to ascertain status for extensive
forms with long solve times.

All options begin with a double dash prefix. The full set of arguments for runef
can be obtained using the --help option.

NOTE: It is common to replace --model-location with its alias -m and
--scenario-tree-location with -s. The aliases make use of only a
single dash and do not use an equal sign.

For example, to write and solve the farmer problem (provided with the Pyomo
installation, in the directory pyomo/examples/pysp/farmer), the command
is:

runef -m models -s scenariodata --solve --solver=glpk

Following solver execution, the resulting solution is loaded and displayed. The solu-
tion output is split into two distinct components: variable values and stage/scenario
costs. For the farmer example, the per-node variable values are given as

Tree Nodes:

Name=AboveAverageNode
Stage=SecondStage
Parent=RootNode
Variables:

QuantitySubQuotaSold[CORN]=48.0
QuantitySubQuotaSold[SUGAR_BEETS]=6000.0
QuantitySubQuotaSold[WHEAT]=310.0

Name=AverageNode
Stage=SecondStage
Parent=RootNode
Variables:

QuantitySubQuotaSold[SUGAR_BEETS]=5000.0
QuantitySubQuotaSold[WHEAT]=225.0

178 10 Stochastic Programming Extensions

Name=BelowAverageNode
Stage=SecondStage
Parent=RootNode
Variables:

QuantityPurchased[CORN]=48.0
QuantitySubQuotaSold[SUGAR_BEETS]=4000.0
QuantitySubQuotaSold[WHEAT]=140.0

Name=RootNode
Stage=FirstStage
Parent=None
Variables:

DevotedAcreage[CORN]=80.0
DevotedAcreage[SUGAR_BEETS]=250.0
DevotedAcreage[WHEAT]=170.0

Similarly, the per-node stage costs are given as
Tree Nodes:

Name=AboveAverageNode
Stage=SecondStage
Parent=RootNode
Conditional probability=0.3333
Children:

None
Scenarios:

AboveAverageScenario
Expected cost of (sub)tree rooted at node=-275900.0000

Name=AverageNode
Stage=SecondStage
Parent=RootNode
Conditional probability=0.3333
Children:

None
Scenarios:

AverageScenario
Expected cost of (sub)tree rooted at node=-218250.0000

Name=BelowAverageNode
Stage=SecondStage
Parent=RootNode
Conditional probability=0.3333
Children:

None
Scenarios:

BelowAverageScenario
Expected cost of (sub)tree rooted at node=-157720.0000

Name=RootNode
Stage=FirstStage
Parent=None
Conditional probability=1.0000

10.4 Generating and Solving the Extensive Form 179

Children:
AboveAverageNode
AverageNode
BelowAverageNode

Scenarios:
AboveAverageScenario
AverageScenario
BelowAverageScenario

Expected cost of (sub)tree rooted at node=-108390.0000

and the per-scenario overall costs are
Scenarios:

Name=AboveAverageScenario
Probability=0.3333
Leaf Node=AboveAverageNode
Tree node sequence:

RootNode
AboveAverageNode

Stage= FirstStage Cost=108900.0000
Stage= SecondStage Cost=-275900.0000
Total scenario cost=-167000.0000

Name=AverageScenario
Probability=0.3333
Leaf Node=AverageNode
Tree node sequence:

RootNode
AverageNode

Stage= FirstStage Cost=108900.0000
Stage= SecondStage Cost=-218250.0000
Total scenario cost=-109350.0000

Name=BelowAverageScenario
Probability=0.3333
Leaf Node=BelowAverageNode
Tree node sequence:

RootNode
BelowAverageNode

Stage= FirstStage Cost=108900.0000
Stage= SecondStage Cost=-157720.0000
Total scenario cost=-48820.0000

The output file format for the extensive form problem instance is controlled by
the --solver-io=SOLVER IO option. Different solvers support different types
of IO, but the following are common options: lp - generate LP files, nl - generate NL
files, python - direct Python interface, os - generate OSiL XML files. If the filename
given by the --output-file has a filename that is .lp or .nl , then that will
determine the format.

Various other command-line options are available in the runef command, in-
cluding those related to performance profiling and Python garbage collection. Fur-
ther, the runef command is capable of writing and solving the extensive form

180 10 Stochastic Programming Extensions

augmented with a weighted Conditional Value at Risk term in the objective [79].
To activate this, use the option --generate-weighted-cvar along with
--risk-alpha=RISK ALPHA to set the probability threshold associated with
CVaR (the default is 0.95) and --cvar-weight=CVAR WEIGHT to give the
weight associated with the CVaR term in the risk-weighted objective formulation.
The default is 1.0 (which is completely arbitrary for most problem instances). If the
weight is 0, then only a non-weighted CVaR cost will appear in the EF objective and
the expected cost component will be dropped.

The runef command produces the extensive form by introducing master vari-
ables to use in explicit non-anticipativity constraints. Although more compact for-
mulations could be generated, there do not appear to be compelling reasons for
doing so because the presolvers in commercial solver packages (and those avail-
able with some open-source solvers) are able to quickly identify and eliminate most
of the redundant variables and constraints that are generated in the extensive form
generated by runef.

NOTE: The runef command does not call a solver unless the --solve op-
tion is given. To specify the solver, use the --solver=X option where X is
replaced by the solver name.

10.5 Progressive Hedging: A Generic Decomposition Strategy

We now describe a decomposition strategy for optimizing stochastic programs,
which is often required in practice for large-scale instances with large numbers
of scenarios, discrete variables, or decision stages. There are two broad classes of
decomposition-based strategies: horizontal and vertical. Vertical strategies decom-
pose a stochastic program by time stages; Van Slyke and Wets’ L-shaped method is
the primary method in this class [81]. In contrast, horizontal strategies decompose
a stochastic program by scenario; Rockafellar and Wets’ Progressive Hedging algo-
rithm [76] and Caroe and Schultz’s Dual Decomposition (DD) algorithm [13] are
two notable methods in this class.

Progressive Hedging (PH) was initially introduced as a decomposition strat-
egy for solving large-scale stochastic linear programs [76]. PH is a horizontal, or
scenario-based, decomposition technique, and it possesses theoretical convergence
properties when all decision variables are continuous. In particular, the algorithm
has a linear convergence rate given a convex reference scenario optimization model.

Despite its introduction in the context of stochastic linear programs, PH has
proven to be a very effective heuristic for solving stochastic mixed-integer pro-
grams. PH is particularly effective in this context when there are computationally
efficient techniques for solving the deterministic single-scenario optimization prob-
lems. A key advantage of PH in the mixed-integer case is the absence of require-
ments concerning the number of stages or the type of variables allowed in each

10.5 Progressive Hedging: A Generic Decomposition Strategy 181

stage – as is common for many proposed stochastic mixed-integer algorithms. Nu-
merous applications to stochastic mixed-integer programs have been reported, such
as [18, 21, 47, 57, 59]. For large, real-world stochastic mixed-integer programs, the
determination of optimal solutions is generally not computationally tractable, so a
heuristic solver like PH is quite useful and practical.

Research on computational aspects of PH is ongoing. Numerous ways to acceler-
ate convergence are controlled by parameters in PySP, but there are not yet methods
for setting their values automatically. Hence, an understanding of the PH algorithm
is needed to effectively apply it in practice. The basic idea of PH is as follows:

1. For each scenario s, solutions are obtained for the problem of minimizing, sub-
ject to the problem constraints, the deterministic fs (Formulation Ps).

2. The variable values for an implementable – but likely not admissible – solution
are obtained by averaging over all scenarios at a scenario tree node.

3. For each scenario s, solutions are obtained for the problem of minimizing, sub-
ject to the problem constraints, the deterministic fs (Formulation Ps) plus terms
that penalize the lack of implementability using a sub-gradient estimator for the
non-anticipativity constraints and a squared penalty term.

4. If the solutions have not converged sufficiently and the allocated compute time
is not exceeded, goto Step 2.

5. Post-process, if needed, to produce a fully admissible and implementable solu-
tion.

To provide a formal PH algorithm statement, we first formalize some of the sce-
nario tree concepts. We use Pr(A) to denote the sum of Pr(s) over all s for scenarios
emanating from node A (i.e., those s that are the leaves of the sub-tree having A as
a root, also referred to as s ∈ A). We use t(A) to indicate the time index for node
A (i.e., node A corresponds to time t). We use X(t;A) on the left hand side of
a statement to indicate assignment to the vector (x1(s, t), . . . ,xN(t)(s, |T |)) for each
s ∈ A . We refer to vectors at each iteration of PH using a superscript; e.g., w(0)(s)
is the multiplier vector for scenario s at PH iteration zero. The PH iteration counter
is k. The method makes use of a system of row vectors, w, that have the same di-
mension as the column vector system X , so we use the same shorthand notation. For
example, w(s) denotes(w(s,1), . . . ,w(s, |T |)) in the multiplier system.

Figure 10.1 provides a formal description of the PH algorithm (with step num-
bering that matches the informal statement given above). Note that ρ > 0 is an algo-
rithmic parameter. In addition to termination criteria based mainly on convergence,
we must also allow for the use of time-based termination because non-convergence
is a possibility. Iterations are continued until k reaches some pre-determined limit or
the algorithm has converged – which we take to indicate that the set of scenario so-
lutions s is sufficiently homogeneous. One possible definition requires the distance
between solutions for each scenario sub-problem to be less than some parameter.

The value of the parameter ρ strongly influences the actual convergence rate
of PH: if ρ is too small, the penalty coefficients will vary little between consecu-
tive iterations. To achieve tractable PH runtimes, significant tuning and problem-

182 10 Stochastic Programming Extensions

1. k ←− 0
2. For all scenario indexes, s ∈ S :

X (0)(s)←− argmin fs(X(s)) : X(s) ∈ Ωs (10.1)

and
w(0)(s)←− 0

3. k ←− k+1
4. For each node, A , in the scenario tree, and for all t = t(A):

X (k−1)
(t;A)←− ∑

s∈A
Pr(s)X(t;s)(k−1)/Pr(A)

5. For all scenario indices, s ∈ S :

w(k)(s)←− w(k−1)(s)+(ρ)
(

X (k−1)(s)−X (k−1)
)

and

Xk(s)←− argmin fs(X(s))+w(k)(s)X(s)+ρ/2
∥∥∥X(s)−Xk−1

∥∥∥2
: X(s) ∈ Ωs. (10.2)

6. If the termination criteria are not met (e.g., solution discrepancies quantified via a metric g(k)),
then go to Step 3.

Fig. 10.1: A formal description of the Progressive Hedging algorithm.

dependent strategies for computing ρ are often required; mechanisms to support
various strategies for setting ρ are described in Section 10.5.1.

10.5.1 The runph Script

Analogous to the runef command for generating and solving the extensive form,
PySP provides a single point-of-entry command, runph, to solve and post-process
stochastic programs via PH. In this section, we briefly describe the general usage
of this command, followed by a discussion of some generally effective options to
customize the execution of PH. A number of key options are shared with the runef
command: --verbose, --model-directory,
--instance-directory, and --solver. The --model-location and
--scenario-tree-location options (and their aliases -m and -s) are used
to specify the PySP problem instance, while the --solver option is used to spec-
ify the solver applied to individual scenario sub-problems.

The most general PH-specific options are:

--max-iterations=MAX ITERATIONS
The maximum number of PH iterations, which defaults to 100.

10.5 Progressive Hedging: A Generic Decomposition Strategy 183

--default-rho=DEFAULT RHO
The global ρ scalar parameter value for all variables not given a ρ value by a
configuration file. This option is required.

--termdiff-threshold=TERMDIFF THRESHOLD
The convergence threshold used to terminate PH (Step 6 of the pseudocode).
This quantity is known as the termdiff. The default is 0.0001, which is too low
for most applications. The default convergence metric is the expected deviation
from the mean

gk = ∑
s∈S

Pr(s)||X (k)(t;s)− X̄ (k)(A)||

summed across all variables and divided by the number of variables. The option
--enable-normalized-termdiff-convergence corresponds to this;
other options are possible and can be seen by using the runph --help com-
mand. Most of the convergence metrics that have been implemented in PySP
consider only primal values.

For any real application, experimentation and analysis should be applied to obtain a
computationally effective configuration of options.

To illustrate the execution runph on a stochastic linear program, we again con-
sider Birge and Louveaux’s farmer problem. To solve the farmer problem with PySP,
a user simply executes the following,

runph --model-directory=models \
--instance-directory=scenariodata --default-rho=1

which will result in eventual convergence to an optimal, admissible, and imple-
mentable solution – subject to the numerical tolerance issues. For the sake of brevity,
we do not illustrate the output here. The quantity of information generated by PH
can be significant, e.g., including the penalty weights and solutions for each sce-
nario problem s ∈ S at each iteration. However, this information is not generated
by default. Rather, simple summary information, including the value of g(k) at each
PH iteration k, is the default output.

As is theoretically promised in the case of stochastic linear programs, runph
does converge given a linear PySP input model. The exact number of iterations de-
pends in part on the precise solver used; on our test platform using a ρ value of 1,
for example, convergence is achieved in about 50 iterations. It should be noted that
for many stochastic linear and small mixed-integer programs (including the farmer
example), PH may require much more computational effort than the extensive form,
primarily because of the overhead associated with communicating with solvers for
each scenario, for each PH iteration. However, this overhead can be negligible for
larger and more difficult scenario problems, and larger numbers of scenarios. Per-
haps more vexing, is that for large instances a bad value of ρ can result in non-
convergence (or glacial rates of convergence).

Having described the basic functionality of runph, we now transition to a dis-
cussion of some issues with PH that can arise in practice, and their resolution via
the runph command. More comprehensive configuration methods, to address more
complex PH issues, are discussed in Section 10.6.

184 10 Stochastic Programming Extensions

10.5.1.1 Variable-specific ρ

In many applications, a single value of ρ does not yield a computationally efficient
PH configuration. Consider the situation in which the objective is to minimize ex-
pected investment costs in a spare parts supply chain, e.g., for maintaining an aircraft
fleet. The acquisition cost for spare parts is highly variable, ranging from very ex-
pensive (engines) to very cheap (gaskets). If ρ values are too small, e.g., on the order
of the price of a tire, PH will require large iteration counts to achieve changes – let
alone convergence – in the decision variables associated with engine procurement
counts. If ρ values are too high, e.g., on the order of the price of an engine, then the
PH weights w associated with gasket procurement counts will converge too quickly,
yielding sub-optimal variable values. Alternatively, PH sub-problem solutions may
“over-shoot” the optimal variable value, resulting in oscillation.

We have developed various strategies for computing variable-specific ρ val-
ues [85]. The following command-line option for runph is used to specify these
strategies:

--rho-cfgfile=RHO CFGFILE
The name of a configuration command to compute PH rho values. The default
is None.

The configuration file is a callback that computes the desired ρ values. This allows
the expression of arbitrarily complex formulas or procedures for computing ρ val-
ues. For example, the following configuration file is used in conjunction with the
PySP SIZES example [50]:

def ph_rhosetter_callback(ph, scenario_tree, scenario):

MyRhoFactor = 1.0

root_node = scenario_tree.findRootNode()

si = scenario._instance
sm = si._ScenarioTreeSymbolMap

for i in si.ProductSizes:

ph.setRhoOneScenario(
root_node,
scenario,
sm.getSymbol(si.NumProducedFirstStage[i]),
si.UnitProductionCosts[i] * MyRhoFactor * 0.001)

for j in si.ProductSizes:
if j <= i:

ph.setRhoOneScenario(
root_node,
scenario,
sm.getSymbol(si.NumUnitsCutFirstStage[i,j]),
si.UnitReductionCost * MyRhoFactor * 0.001)

10.5 Progressive Hedging: A Generic Decomposition Strategy 185

See the rhosetter.py file in the PySP sizes examples directory. The
model instance attribute represents the instance of the deterministic reference

model, from which the full set of problem variables can be accessed. The exam-
ple script implements a simple cost-proportional ρ strategy, in which ρ is specified
as a function of a variable’s objective function cost coefficient. The customization
strategy underlying the PySP variable-specific ρ mechanism is a limited form of
callback function, in which the core PH code temporarily hands control back to a
user script to set specific model parameters.

10.5.1.2 Linearization of the Proximal Penalty Terms

At each PH iteration k ≥ 1, scenario sub-problems are solved with an augmented
form of the original optimization objective, using both linear and quadratic penalty
terms. The presence of the quadratic terms can cause significant practical difficul-
ties. At present, no open-source linear or mixed-integer solvers currently support
quadratic objective terms in an integrated, robust manner. Most commercial solvers
can handle problems with quadratic objectives, but solver efficiency is often dra-
matically worse relative to the linear case. We have consistently observed scenario
sub-problem solve times an order of magnitude or larger on quadratic mixed-integer
stochastic programs relative to their linearized counterparts.

To address this issue, the runph command provides an option for automatic
linearization of quadratic penalty terms in PH. We first observe that a linear ex-
pression results from the expansion of any quadratic penalty term involving binary
variables. (However, note that in the relaxed problem these terms are not linear.)
The default behavior of runph is to linearize these terms for binary variables but
to use quadratic penalty terms that involve continuous and general integer variables.
The following options can be used to linearize these quadratic penalty terms:

--linearize-nonbinary-penalty-terms=BPTS
Approximate the PH quadratic term for non-binary variables with a piece-wise
linear function. The argument BPTS gives the number of breakpoints in the
linear approximation. This defaults to 0, indicating that linearization is disabled.

--breakpoint-strategy=BREAKPOINT STRATEGY
Specify the strategy to distribute breakpoints on the [lb, ub] interval of each
variable when linearizing. This defaults to 1.

To linearize a quadratic penalty term, runph requires that both lower and upper
bounds (respectively denoted lb and ub) be specified for each variable in each sce-
nario instance. This is most straightforwardly accomplished by specifying bounds
or rules for computing bounds in each of the variable declarations appearing in the
deterministic reference model. In reality, lower and upper bounds can be specified
for all variables, even if trivially. If for some reason bounds are not easily specified
in the deterministic reference model, the option --bounds-cfgfile option can
be used, which functions in a fashion similar to the mechanism for setting variable-
specific ρ described above. Note that if a breakpoint would be very close to a vari-

186 10 Stochastic Programming Extensions

able bound, then the breakpoint is omitted. In other words, the BPTS parameter
serves as an upper bound on the number of actual breakpoints.

Three breakpoint strategies are provided. A value of 1 indicates a uniform dis-
tribution of the BPTS points between lb and ub. A value of 2 indicates a uniform
distribution of the BPTS points between the current minimum and maximum values
observed for the variable at the corresponding node in the scenario tree; segments
between the node min/max values and lb/ub are also automatically generated. Fi-
nally, a value of 3 causes half of the BPTS breakpoints to be on either side of the
observed variable average at the corresponding node in the scenario tree, with an
exponentially increasing distance from the mean.

Automatic linearization of the quadratic penalty term allows PySP to employ
a wide variety of solvers within PH, and it enables a more efficient utilization of
those solvers. In particular, it facilitates the use of open-source solvers – which can
be critical in parallel environments where it may be impossible to procure large
numbers of commercial solver licenses for concurrent use (see Section 10.7).

10.5.1.3 Solution Values

Upon termination, the runph script attempts to identify an admissible, imple-
mentable solution that can be used to compute an expected value for the objective
function and to be displayed as the solution. Various strategies can be used, but if
the PH algorithm has converged to the point where all scenarios are the same, then
it is easy to find such a solution.

At each iteration, PH computes an average value for each variable over the nodes
of the scenario tree. We refer to this as X in Step 4 of the algorithm given in Fig-
ure 10.1. For many problems, particularly those with integer restrictions, X might
not be feasible for every scenario unless PH happens to be fully converged (in the
primal variables). Consequently, the software computes a solution system X̂ that
is more likely to be feasible for every scenario and will be equivalent to X under
full convergence. This solution is reported upon completion of PH and its expected
value is reported if it is feasible for all scenarios.

Methods for computing X̂ are controlled by the --xhat-method command-
line option. For example --xhat-method=closest-scenario causes X̂ to
be set to the scenario that is closest to X (in a z-score sense). Other options, such
as voting and rounding, assign values of X to X̂ except for binary and general
integer variables. The voting choice sets the integer values according to probabil-
ity weighted voting across the scenarios and rounding simply rounds X to obtain
integers. Note that for binary variables these methods are equivalent.

10.5.1.4 Setting Variable Bounds

In some situations, it is helpful to set variable bounds in a callback, perhaps for
the purpose of reading data from multiple scenarios. The following example sets

10.6 Progressive Hedging Extensions: Advanced Configuration 187

bounds for the networkflow example in the Pyomo distribution. One adds some-
thing like this to the runph command line:
--bounds-cfgfile=networkflow/config/xboundsetter.py

We only need to set upper bounds on first-stage \
variables, i.e., those

being blended.

def ph_boundsetter_callback(ph, scenario_tree, scenario):

x is a first stage variable
root_node = scenario_tree.findRootNode()
scenario_instance = scenario._instance
symbol_map = scenario_instance._ScenarioTreeSymbolMap
for arc in scenario_instance.Arcs:

scenario_instance.x[arc].setlb(0.0)
scenario_instance.x[arc].setub(scenario_instance.M)

10.6 Progressive Hedging Extensions: Advanced Configuration

The previous sections have described ways of customizing PH that do not change the
core behavior of the PH algorithm. The following sections describe more extensive
and intrusive customization of the PySP PH behavior. In Section 10.6.2, we describe
the interface to a PH extension that provides functionality that is often critical to
achieving good performance on stochastic mixed-integer programs. The next two
sections discuss other command-line options that are often used in PH practice.
Finally, we discuss the programmatic facilities that PySP provides to users (typically
programmers) that want to develop their own extensions.

10.6.1 Bundling

The idea behind bundling is simple: instead of having just one scenario as a sub-
problem, combine multiple scenarios and solve the resulting EF as a sub-problem
(sometimes called a super-scenario. Various strategies have been, and are being
proposed, for how to form the bundles (see, e.g., [17]) Bundling is specified in the
ScenarioStructure.dat file.

An example is include with Pyomo in the SIZES10WithBundles
sub-directory of the sizes example. The following lines appear at the bottom of the
ScenarioStructure.dat file:

188 10 Stochastic Programming Extensions

param Bundling := True ;

set Bundles := EvenBundle OddBundle ;

set BundleScenarios[OddBundle] :=
Scenario1 Scenario3 Scenario5 Scenario7 Scenario9 ;

set BundleScenarios[EvenBundle] :=
Scenario2 Scenario4 Scenario6 Scenario8 Scenario10 ;

The line param Bundling := True ; is required to signal that bundles
are to be used. The rest of the lines will not cause bundling to occur unless this line
is present. So by commenting out this line, or by changing the right hand side of it
to False, bundling can be toggled.

The set names Bundles and BundleScenarios are reserved words, but the
names of the bundles (and, of course, the names of the scenarios) are user specified.
Any string can be used as the name of a bundle. There can be any number of bundles
and they need not contain the same number of scenarios; however, every scenario
must be in some bundle.

An alternative to adding these lines to the ScenarioStructure.dat file is to put them
in another file and then give that file name as an argument to
--scenario-bundle-specification on the runph command line. If the
specified name ends with a .dat suffix, the argument is interpreted as a filename.
Otherwise, the name is interpreted as a file in the instance directory, constructed by
adding the .dat suffix automatically.

The option --create-random-bundles=X creates X random bundles, thus
obviating the need for any file to specify the bundles. Note that the option
--scenario-tree-seed= allows the user to specify the random seed used for
bundle formation so that experiments are repeatable. For example, adding the fol-
lowing to the command line results in creation of 10 bundles using the seed 7734:

create-random-bundles=10 --scenario-tree-seed=7734

10.6.2 Watson and Woodruff Extensions

The basic PH algorithm can converge slowly, even if appropriate values of ρ have
been computed. Further, in the mixed-integer case, PH can exhibit cyclic behav-
ior, preventing convergence. Consequently, PH implementations in practice are aug-
mented with methods to both accelerate convergence and prevent cycling. Watson
and Woodruff [85] describe and introduce many of these extensions.

The PySP implementation of PH provides these extensions in the form of a plu-
gin, i.e., a piece of code that extends the core functionality of the underlying algo-
rithm, at well-defined points during execution. This “Watson-Woodruff” (WW) plu-
gin generalizes the accelerator and cycle-avoidance mechanisms described in Wat-
son and Woodruff [85]. The Python module implementing this plugin is named

10.6 Progressive Hedging Extensions: Advanced Configuration 189

wwextension.py; general users do not need to understand the contents of this
module.

The runph command provides three command-line options to control the exe-
cution of the Watson-Woodruff extensions plugin:

--enable-ww-extensions
Enable the Watson-Woodruff PH extensions plugin. This defaults to False.

--ww-extension-cfgfile=WW EXTENSION CFGFILE
The name of a configuration file for the Watson-Woodruff PH extensions plugin.
A good name to use is “wwph.cfg”.

--ww-extension-suffixfile=WW EXTENSION SUFFIXFILE
The name of a variable suffix file for the Watson-Woodruff PH extensions plu-
gin. A good name to use is “wwph.suffixes”. Note that these suffixes are not the
same as the suffix component as discussed in 4.9.

As discussed in Section 10.6.5, user-defined extensions can co-exist with the Watson-
Woodruff extension.

Many aspects of the extensions are necessarily problem-specific. However, there
are some general principles. Some of the main issues addressed by the Watson-
Woodruff extensions are convergence detection, cycle detection, and convergence-
based sub-problem optimality thresholds.

A detailed analysis of PH behavior on a variety of problems indicates that in-
dividual decision variables frequently converge to specific, fixed values across all
scenarios in early PH iterations. Further, despite interactions among the variables,
these values frequently do not change in subsequent PH iterations. Such variable-
by-variable convergence behavior suggests a potentially powerful, albeit obvious,
heuristic: once a particular variable has converged to an identical value across all
scenarios for some number of iterations, fix it to that value. However, this strategy
must be used carefully. In particular, for problems where the constraints effectively
limit variables from both sides, these methods may result in PH encountering infea-
sible scenario sub-problems even though the problem is ultimately feasible.

In the presence of integer variables, PH occasionally exhibits cycling behav-
ior. Consequently, cycle detection and avoidance mechanisms are required to force
eventual convergence of the PH algorithm in the mixed-integer case. To detect cy-
cles, we focus on repeated occurrences of the weight vectors w, heuristically im-
plemented using a simple hashing scheme [87] to minimize impact on run-time.
Once a cycle in the weight vectors associated with any decision variable is detected,
the value of that variable is fixed (using problem-specific, user-supplied knowledge)
across scenarios in order to break the cycle.

A number of researchers have noted that it is unnecessary to solve scenario sub-
problems to optimality in early PH iterations [44]. In these early iterations, the pri-
mary objective is to quickly obtain coarse estimates of the PH weight vectors, which
(at least empirically) does not require optimal solutions to scenario sub-problems.
Once coarse weight estimates are obtained, optimal solutions can then be pursued to
tune the weight vectors in the effort to achieve convergence. Given a measure of sce-
nario solution homogeneity (e.g., the convergence threshold g(k)), a commonly used

190 10 Stochastic Programming Extensions

strategy is to set the solver mipgap – a termination threshold based on the difference
in current lower and upper bounds – in proportion to this measure.

Fixing variables aggressively typically results in shorter run-times, but the strat-
egy can also degrade the quality of the obtained solution. Furthermore, for some
problems, aggressive fixing can result in infeasible sub-problems even though the
extensive form is ultimately feasible. Many of the parameters discussed in the next
subsections control fixing of variables.

10.6.2.1 Mipgap Control and Cycle Detection Parameters

The WW extension defines and exposes a number of key user-controllable parame-
ters, each of which can be specified in the WW PH configuration file. The following
parameters are supported in this configuration file:

Iteration0MipGap Specifies the mipgap for all PH scenario sub-problem
solves in iteration 0. This defaults to 0, indicating that the solver default mipgap
is used.

InitialMipGap Specifies the mipgap for all PH scenario sub-problem solves in
iteration 1. This defaults to 0.1. A value equal to 0 indicates that the solver
default mipgap is used. If a value z > 0 is specified, then no PH scenario
sub-problem solves will use a mipgap greater than z in iterations k > 1. Let
g(1) denote the value of the PH convergence metric (independent of the par-
ticular metric used) in iteration 1. To determine the mipgap for PH iterations
k > 1, the value of the convergence metric g(k) is used to interpolate between
the InitialMipGap and FinalMipGap parameter values; the latter is dis-
cussed below. In cases where the convergence metric g(k) increases relative to
g(k−1), the mipgap is thresholded to the value computed during iteration k−1.

FinalMipGap The target final value for all iteration k scenario sub-problem
solves at PH convergence, i.e., when the value of the convergence metric g(k)
is indistinguishable from 0 (subject to tolerances). This defaults to 0.001. The
value of this parameter must be less than or equal to the InitialMipGap.

hash hit len to slam Ignore possible cycles in the weight vector associated
with a variable for which the cycle length is less than this value. Also, ignore cy-
cles if any variables have been fixed in the previous hash hit len to slam
PH iterations. This defaults to the number of problem scenarios |S |. This de-
fault is often not a good choice. For many problems with numerous scenarios,
fixed constant values (e.g., such as 10 or 20) typically lead to significantly better
performance.

DisableCycleDetection A binary parameter, which defaults to False. If
this is True, then cycle detection and the associated slamming logic (described
in section 10.6.2.2) are completely disabled. This parameter cannot be changed
during PH execution, as the data structures associated with cycle detection stor-
age and per-iteration computations are bypassed.

10.6 Progressive Hedging Extensions: Advanced Configuration 191

Users specify values for these parameters in the WW PH configuration file, which
is loaded by specifying the --ww-extension-cfgfile command-line option
for runph. Examples are shown in the config subdirectories of the examples
distributed with Pyomo, such as in the networkflow example.

10.6.2.2 General Variable Fixing and Slamming Parameters

Variable fixing is often an empirically effective heuristic for accelerating PH conver-
gence. Fixing strategies implicitly rely on strong correlations between the converged
value of a variable across all scenario sub-problems in an intermediate PH itera-
tion and the value of the variable in the final solution should no fixing be imposed.
Variable fixing reduces scenario sub-problem size, accelerating solve times. How-
ever, depending on problem structure, the strategy can lead to either sub-optimal
solutions (due to premature declarations of convergence) or the failure of PH to
converge (due to interactions among the constraints). Consequently, careful and
problem-dependent tuning is typically required to achieve an effective fixing strat-
egy. To facilitate such tuning, the WW PH extension allows for specification of the
following parameters in a configuration file:

Iter0FixIfConvergedAtLB A binary parameter indicating whether discrete
variables that are at their lower bound in all scenarios after iteration 0 will be
fixed at that bound. This defaults to False.

Iter0FixIfConvergedAtUB A binary parameter that is analogous to the
Iter0FixIfConvergedAtLB parameter, except applying to discrete vari-
able upper bounds. This defaults to False.

Iter0FixIfConvergedAtNB A binary parameter that is analogous to the
Iter0FixIfConvergedAtLB parameter, except it applies to discrete vari-
able values that are not equal to either lower or upper bounds. This defaults to
False.

FixWhenItersConvergedAtLB The number of consecutive PH iterations over
which discrete variables must be at their lower bound in all scenarios before
they will be fixed at that bound. This defaults to 10. A value of 0 indicates that
discrete variables will never be fixed at this bound.

FixWhenItersConvergedAtUB An integer parameter that is analogous to the
FixWhenItersConvergedAtLB parameter, except that it applies to dis-
crete variable upper bounds. This defaults to 10.

FixWhenItersConvergedAtNB An integer parameter that is analogous to the
FixWhenItersConvergedAtLB parameter, except that it applies to dis-
crete variable values that are not equal to either lower or upper bounds. This
defaults to 10.

FixWhenItersConvergedContinuous The number of consecutive PH iter-
ations k ≥ that continuous variables must be at the same, consistent value in all
scenarios before they will be fixed at that value. This defaults to 0, indicating
that continuous variables will not be fixed.

192 10 Stochastic Programming Extensions

Fixing strategies at iteration 0 are typically distinct from those in subsequent iter-
ations. For example, agreement in iteration 0 of acquisition quantities in a resource
allocation problem to a value of 0 may (depending on the problem structure) indi-
cate that no such resources are likely to be required. In general, fixing strategies for
PH iterations k ≥ 1 yield better solutions with longer delays, albeit at the expense of
longer run-times; this trade-off is numerically illustrated in Watson and Woodruff
[85]. Differentiation between fixing behaviors at lower bounds, upper bounds, or
intermediate values are typically necessary due to the problem structure (e.g., vari-
ables being constrained from lower or upper bounds).

For many mixed-integer problems, PH can spend a disproportionately large num-
ber of iterations “fine-tuning” the values of a small number of variables in order to
achieve convergence. Consequently, it is often desirable to force early agreement
of these variables, even at the expense of sub-optimal final solutions. We refer to
this mechanism as slamming [85]. Slamming is also used to break cycles detected
through the mechanisms described above. The WW PH extension supports a number
of configuration options to control variable slamming:

SlamAfterIter The PH iteration k after which variables will be slammed to
force convergence. After this threshold is passed, one variable is slammed every
other iteration to force convergence. This defaults to the number of scenarios
|S |.

CanSlamToLB A binary parameter indicating whether any discrete variable can
be slammed to its lower bound. This defaults to False.

CanSlamToUB Analogous to the CanSlamToUB parameter, except that it applies
to discrete variable upper bounds. This defaults to False.

CanSlamToAnywhere Analogous to the CanSlamToLB parameter, that the
variable can be slammed to its current average value across scenarios. This de-
faults to False.

CanSlamToMin A binary parameter indicating whether any discrete variable can
be slammed to its current minimum value across scenarios. This defaults to
False.

CanSlamToMax Analogous to the CanSlamToMin parameter, except that it ap-
plies to discrete variable maximum values across scenarios. This defaults to
False.

PH Iters Between Cycle Slams Controls the number of PH iterations to
wait between variable slams imposed to break cycles. This defaults to 1, in-
dicating a single variable will be slammed every iteration if a cycle is detected.
A value of 0 indicates an unlimited number of variable slams can occur per PH
iteration.

Slamming to the minimum and maximum scenario tree node values is often use-
ful in resource allocation problems and other problems that we will call one-sided
diet problems for historical reasons. For example it is frequently safe, with respect to
feasibility, to slam a variable value to the scenario maximum in the case of one-side
diet problems. In the event that multiple slamming options are available, the priority
order is given as lower bound, minimum, upper bound, maximum, and anywhere.

10.6 Progressive Hedging Extensions: Advanced Configuration 193

For our purposes, we use the name one-sided diet problems to refer to a family
of linear problems defined mathematically to be of the form:

min
n

∑
j=1

c jx j

subject to:
n

∑
j=1

Ai, jx j ≥ bi, i = 1, . . . ,m

and
x j ≥ 0, j = 1, . . . ,n

where the c is a vector of non-negative data of length n, A is a n by m matrix of non-
negative data, and b is a vector of length m with non-negative data. The problem
is to find values for the variable x, which is a vector of length n. We call it one-
sided because given the non-negative data and the direction of the inequality, large
enough values of x are all feasible and furthermore, once a feasible solution has been
found, it is clear that strictly increasing the value of some of the elements of x will
also result in a feasible solution. For a stochastic problem, the data may vary from
scenario to scenario, but when there is a feasible solution for every scenario then for
any vector element it must be true that the maximum value across all scenarios must
be feasible for all scenarios. This makes slamming to the maximum “safe” in some
sense for such problems.

10.6.2.3 Variable-specific Fixing and Slamming Parameters

Global controls for variable fixing and slamming are generally useful, but for many
problems more fine-grained control is required. For example, in one-sided diet prob-
lems, feasibility can be maintained during slamming by fixing a variable value at
the maximum level observed across scenarios (assuming a minimization objective)
[85]. Similarly, it is often desirable in a multi-stage stochastic program to fix vari-
ables appearing in early stages before those appearing in later stages, or to fix binary
variables for siting decisions in facility location before discrete allocation variables
associated with those sites.

The WW PH extension provides fine-grained, variable-specific control of both
fixing and slamming using the concept of suffixes, which is similar to the mecha-
nism employed by AMPL [2]. Global defaults are established using the mechanisms
described in Section 10.6.2.2, while optional variable-specific overrides are speci-
fied via the suffix mechanism we now describe.

The specific suffixes recognized by the WW PH extension include the following,
and have analogous (variable-specific) functionality to that provided by the param-
eters described in Section 10.6.2.2:

Iter0FixIfConvergedAtLB

194 10 Stochastic Programming Extensions

Iter0FixIfConvergedAtUB
Iter0FixIfConvergedAtNB
FixWhenItersConvergedAtLB
FixWhenItersConvergedAtUB
FixWhenItersConvergedAtNB
CanSlamToLB
CanSlamToUB
CanSlamToAnywhere
CanSlamToMin
CanSlamToMax.

Additionally, we introduce the suffix SlammingPriority, which allows for pri-
oritization of variables slammed during convergence acceleration; larger values in-
dicate higher priority. The latter are particularly useful, for example, in the context
of resource allocation problems in which early slamming of lower-cost items tends
to yield lower-cost final solutions.

Suffixes are supplied to the WW PH extension in a file, which is specified using
the --ww-extension-suffixfile option. For example, the following yaml
format suffix file employs the variables used in the notional examples discussed
above:

allow slamming of b0 to any agreed-up value.
RootNode: # or FirstStage
b0[*,*]:
CanSlamToLB: True
CanSlamToMin: True
CanSlamToAnywhere: True
CanSlamToMax: True
CanSlamToUB: True
SlammingPriority: 1 # equal priority for now.

10.6.3 Solving a Constrained Extensive Form

A common practice for using PH as a mixed-integer stochastic programming
heuristic involves running PH for a limited number of iterations (e.g., via the
--max-iterations option), fixing the values of discrete variables that appear
to have converged, and then solving the significantly smaller extensive form that
results [59]. The resulting compressed extensive form is generally far smaller and
easier to solve than the original extensive form. This technique directly avoids issues
related to the slow convergence of PH, which may be required to resolve relatively
small remaining discrepancies in scenario sub-problem solutions. Any disadvantage
stems from the variable fixing itself, since premature fixing of variables can lead to
sub-optimal extensive form solutions.

The following options are used to write and solve the extensive form following
PH termination of the runph command:

10.6 Progressive Hedging Extensions: Advanced Configuration 195

--write-ef
Upon termination, write the extensive form of the model. Disabled by default.

--solve-ef
Following write of the extensive form model, solve the extensive form and dis-
play the resulting solution. Disabled by default.

--ef-output-file=EF OUTPUT FILE
The name of the extensive form output file. Defaults to “efout.lp”.

When writing the extensive form, all variables whose values are currently fixed
in any scenario sub-problem are automatically preprocessed into constant terms in
any referencing constraints or the objective. As noted in Section 10.4, PySP only
supports output of the CPLEX LP file format. Solver selection is controlled with
the --solver keyword, and it used the same way as when solving scenario sub-
problems. However, the runph command does provide interfaces for solver options
(including mipgap) that are specific to the extensive form solve.

10.6.4 Alternative Convergence Criteria

The implementation of PH in PySP supports a variety of convergence metrics, en-
abled via the following runph command-line options:

--enable-termdiff-convergence
Terminate PH based on the termdiff convergence metric, which is defined
as the unscaled sum of differences between variable values and the mean (see
Section 10.5.1). This defaults to True.

--enable-normalized-termdiff-convergence
Terminate PH based on the normalized termdiff convergence metric. Each
term in the termdiff sum is normalized by the average variable value. This
defaults to False.

--enable-free-discrete-count-convergence
Terminate PH based on the free discrete variable count convergence metric.
This defaults to False.

--free-discrete-count-threshold=
FREE DISCRETE COUNT THRESHOLD
PH will terminate once the number of free discrete variables drops below this
threshold.

The termination criterion associated with the free discrete variable count is particu-
larly useful when deployed in in conjunction with the capability to solve restricted
extensive forms described in Section 10.6.3. Note that multiple criteria can be spec-
ified.

196 10 Stochastic Programming Extensions

10.6.5 User-Defined Extensions

The Watson-Woodruff PH extensions described in Section 10.6.2 rely on a sim-
ple, general callback framework that allows user-defined extensions to enhance the
functionality of the core PH algorithm. While most modelers and typical PySP users
would not make use of this feature, programmers and algorithm developers can eas-
ily leverage this capability. The interface for user-defined PH extensions is defined
in a PySP read-only file called phextension.py. This file defines an interface
class that defines the points at which runph temporarily transfers control to user-
defined extensions:

class IPHExtension(Interface):

def post_ph_initialization(self, ph):
""" Called after PH initialization."""
pass

def post_iteration_0_solves(self, ph):
""" Called after the iteration 0 solves."""
pass

def post_iteration_0(self, ph):
""" Called after the iteration 0 solves, averages

computation, and weight update."""
pass

def post_iteration_k_solves(self, ph):
""" Called after the iteration k solves."""
pass

def post_iteration_k(self, ph):
""" Called after the iteration k solves, averages

computation, and weight update."""
pass

def post_ph_execution(self, ph):
""" Called after PH has terminated."""
pass

User-defined extensions are defined with a Python class that inherits from the
class SingletonPlugin and implements the PH extension interface shown
above:

from pyutilib.component.core import *
from pyomo.pysp import phextension

class examplephextension(SingletonPlugin):

implements(phextension.IPHExtension)

def post_instance_creation(self, ph):
print ‘‘Done creating PH scenario instances!’’

10.7 Solving PH Scenario Sub-Problems in Parallel 197

A more complete example of PH extensions is supplied with PySP, in the Python file
testphextension.py. All Pyomo user plugins are derived from a
SingletonPlugin base class. The word “Singleton” indicates that that there
cannot be multiple instances of each type of user-defined extension.

Each extension point (i.e., callback) in the user-defined extension is supplied the
PH object, which includes the current state of the scenario tree, reference instance,
all scenario instances, PH weights, etc. User code can then be developed to modify
the state of PH (e.g., current solver options) or variable attributes (e.g., fixing as in
the case of the Watson-Woodruff extension).

To use a customized extension with runph, the user invokes the command-line
option --user-defined-extension=EXTENSIONFILE.
Here, EXTENSIONFILE is the Python module name, which is assumed to be either
in the current directory or in some directory specified via the PYTHONPATH envi-
ronment variable. Finally, note that both a user-defined extension and the Watson-
Woodruff PH extension can co-exist. However, the Watson-Woodruff extension will
be invoked before any user-defined extension.

10.7 Solving PH Scenario Sub-Problems in Parallel

PySP supports the distributed execution of the optimization solve from both the
runef and runph commands. A simple client-server paradigm is supported,
which leverages the general distributed solver capabilities that are provided in the
Pyomo library [42]. Pyomo integrates the third-party, open-source Pyro (Python Re-
mote Objects) package [74] to manage the communication between machines, and
Pyomo includes the mechanisms and scripts by which name servers (used to locate
distributed objects) and solver servers (daemons capable of solving MIPs, for ex-
ample) are initialized and interact. Here, we simply describe the use of a distributed
set of solver servers in the context of PySP.

Both the runef and runph commands are implemented such that all requests
for the solution of (mixed-integer) linear problems are mediated by a solver man-
ager. The default solver manager in both commands is a serial solver manager,
which executes all solves locally. Alternatively, a user can invoke a remote solver
manager by specifying the command-line option --solver-manager=pyro.
The Pyro solver manager identifies available remote solver daemons, serializes the
relevant Pyomo model instance for communication, and initiates a solve request
with the daemon. After the daemon has solved the instance, the solution is returned
to the Pyro solver manager, which then transfers the solution to the invoking com-
mand.

We will refer to a single master computer and multiple slave computers in this
discussion, but the master computing processes can be on a processor that also runs
a slave process. The following commands need to be executed to perform distributed
optimization:

198 10 Stochastic Programming Extensions

1. On the master: pyomo ns
2. On the master: dispatch srvr
3. On each slave: pyro mip server
4. On the master: runph ... --solver-manager=pyro ...

Note that the command argument solver-manger has a dash in the middle,
while the commands pyomo ns, dispatch srvr and pyro mip server have
underscores. The first three commands launch processes that have no internal mech-
anism for termination; i.e., they will be terminated only if they crash or if they are
killed by an external process. It is common to launch these processes with out-
put redirection, such as pyomo_ns >& pyomons.log. The runph command
is executed with the usual arguments plus the specification that sub-problem solves
should be directed to the Pyro solver manager.

Python’s pickle module provides facilities for object serialization that can be
applied to very complex objects, including Pyomo model instances. The accessi-
bility of remote solvers within PySP’s PH implementation immediately confers the
benefit of trivial parallelization of scenario sub-problem solves. In the case of com-
mercial solvers, all available licenses can be leveraged. In the open-source case,
cluster solutions can be deployed in a straightforward manner.

Parallelism in PySP most strongly benefits stochastic mixed-integer program
solves, in which the difficulty of scenario sub-problems masks the overhead asso-
ciated with object serialization and client-server communication. At the same time,
parallel efficiency necessarily falls as the number of scenarios increases, due to high
variability in mixed-integer solve times and the presence of barrier synchronization
points in PH (after Step 4 in the pseudocode introduced in Section 10.5). However,
high-throughput computing is often a more important driver for stochastic program-
ming applications than parallel efficiency.

To get better performance for some problems, the pyro mip server can be
replaced by the phsolverserver command. The command
pyrosolverserver --help gives a list of options. If you use the
phsolversover, then use --solver-manager=phpyro as an argument to runph
rather than --solver-manager=pyro. Usually, there needs to be one phsol-
verserver per subproblem.

10.8 Bounds

Using the notation developed in Section 10.5 bounds can be computed after any
iteration, k, of PH by computing

zk(s)←− min
X(s)

fs(X(s))+w(k)(s)X(s) : X(s) ∈ Ωs.

for all scenario indices, s ∈ S . A valid bound is then given by

10.8 Bounds 199

∑
s∈S

zk(s)

A proof this result is given in [30] and an application is shown in [38].
A plugin to compute bounds in this way can be invoked by adding the following

to a runph command:
--user-defined-extension=pyomo.pysp.plugins.phboundextension

When PH terminates, this plugin will report a history of bounds to the terminal as
well as to the file phbound.txt. Setting parameters and file names for this plugin will
change in subsequent versions of Pyomo, but at present, the default is to compute
the bounds after every PH iteration. Since computing the bounds requires consid-
erable computational effort, it may be desirable to compute the bounds less often.
This can be done in either of two ways: by having a file named PHB .DAT that
contains an integer giving the desired frequency, or by creating an operating system
environment variable named PHBOUNDINTERVAL and setting its value to the de-
sired frequency of bound computation. For example, the bound would be computed
every 10 PH iterations if the file PHB .DAT contains the number 10 or the system
environment variable PHBOUNDINTERVAL=10. If the file exists, the environment
variable is not used. Note that the file name has an underscore character before the
period.

An outer bound. is a lower bound for minimization problems and it is an upper
bound for maximization problems. Sometimes, runph is used to try to find bounds
and it is desirable to terminate when the bounds are good enough. The options
--enable-outer-bound-convergence and
--outer-bound-convergence-threshold=VAL cause PH to terminate
when the outer bound has reached VAL (i.e., is at or above VAL for a minimiza-
tion problem).

Chapter 11

Differential Algebraic Equations

Abstract This chapter documents how to formulate and solve optimization prob-
lems with differential and algebraic equations (DAEs). The pyomo.dae package
allows users to easily incorporate detailed dynamic models within an optimiza-
tion framework and is flexible enough to represent a wide variety of differential
equations. We also demonstrate several automated solution techniques included in
pyomo.dae that apply a simultaneous discretization approach to solve dynamic
optimization problems.

11.1 Introduction

In order to develop a better understanding of real-world phenomena, scientists and
engineers often develop dynamic, or differential equation based, models. High fi-
delity simulation of these models can often be difficult and computationally expen-
sive and is still an active research area in many fields. But after a model suitable
for simulation has been developed, the next goal is often to optimize a particular
aspect of the dynamic system. (e.g., model parameter estimates given dynamic data,
or control of the dynamic system to a desired set point). For example, consider the
small optimal control problem from [49]:

min x3(t f) (11.1)
s.t. ẋ1 = x2 (11.2)

ẋ2 =−x2 +u (11.3)

ẋ3 = x2
1 + x2

2 +0.005 ·u2 (11.4)

x2 −8 · (t −0.5)2 +0.5 ≤ 0 (11.5)
x1(0) = 0, x2(0) =−1, x3(0) = 0, t f = 1 (11.6)

201© Springer International Publishing AG 2017
W.E. Hart et al., Pyomo — Optimization Modeling in Python, Springer Optimization
and Its Applications 67, DOI 10.1007/978-3-319-58821-6_11

202 11 Differential Algebraic Equations

where the objective is to minimize the value of x3 at the final time point by finding
the optimal values for the input variable u. This problem includes three differential
equations as constraints and also includes an inequality constraint restricting the
profile of x2, also known as a path constraint.

While it is easy to write down optimization problems including dynamic models,
solving them is hard. Off-the-shelf optimization solvers cannot handle differential
equations directly. Therefore, optimization problems including differential equa-
tions as constraints, or dynamic optimization problems, must be reformulated in
order to be solved. Common solution approaches include single or multiple shoot-
ing methods or a full discretization approach. Regardless of the solution strategy,
the implementation of the technique is often entwined with the particular model or
problem being solved which makes it time-consuming to apply these solution tech-
niques to new dynamic optimization problems or experiment with different solution
strategies on the same model.

The pyomo.dae package addresses several of these challenges. It provides
users the ability to separate the dynamic optimization formulation from the solu-
tion strategy used to solve it. This is done by introducing modeling components
for representing continuous domains and derivative terms directly. pyomo.dae
also includes implementations of the simultaneous discretization solution technique
which can be applied automatically to a Pyomo model with differential equations.

The remainder of this chapter provides a brief overview of how to use the
pyomo.dae package. We refer the reader to Nicholson et al. [64] for a more de-
tailed description and information about the design and novelty of this package. This
package is still under active development and expansion. Please refer to the online
Pyomo documentation for the most up-to-date documentation on new features.

11.2 Pyomo DAE Modeling Components

In order to represent DAE models in Pyomo, the pyomo.dae package defines two
new components:

• the ContinuousSet represents continuous domains over which a derivative
can be taken, and

• the DerivativeVar represents the derivative of a Var with respect to a
ContinuousSet.

The package is explicitly imported to access these modeling components:
from pyomo.environ import *
from pyomo.dae import *

The ContinuousSet component functions similarly to the regular Pyomo
Set. It can be used to index other Pyomo components such as Var, Constraint,
or Expression. A ContinuousSet can be thought of as a bounded virtual set.
In order to construct a ContinuousSet you must supply numeric values repre-

11.2 Pyomo DAE Modeling Components 203

senting the upper and lower bounds of the continuous domain being represented.
For our optimal control example, the continuous domain t is declared as follows.

m.tf = Param(initialize=1)
m.t = ContinuousSet(bounds=(0,m.tf))

A separate ContinuousSet must be declared for each continuous domain
in the model. After declaration, it can be used to index other Pyomo components
and to declare derivatives in conjunction with the DerivativeVar component.
A DerivativeVar must be declared for each derivative that appears in the dy-
namic model. Furthermore, you can only take the derivative of a Var with respect
to a ContinuousSet that is included as an indexing set of the variable. The vari-
ables and derivatives for our optimal control examples can be declared using:

m.u = Var(m.t, initialize=0)
m.x1 = Var(m.t)
m.x2 = Var(m.t)
m.x3 = Var(m.t)

m.dx1 = DerivativeVar(m.x1, wrt=m.t)
m.dx2 = DerivativeVar(m.x2, wrt=m.t)
m.dx3 = DerivativeVar(m.x3)

Notice that the positional argument supplied to a DerivativeVar component
is the Var being differentiated. The indexing sets for a DerivativeVar are in-
herited from and identical to those of the Var being differentiated. If a variable is
indexed by multiple ContinuousSets then the ’wrt’ or ’withrespectto’ keyword
argument is used to specify the desired derivative. In addition, high-order deriva-
tives can also be declared with the DerivativeVar component. For example, a
second order derivative can be specified with:

m.dx1dt2 = DerivativeVar(m.x1,wrt=(m.t,m.t))

Differential equations can be formulated using standard Pyomo constraint com-
ponents. For example, the differential equations for our optimal control example are
implemented with:

def _x1dot(m, t):
if t == m.t.first():

return Constraint.Skip
return m.dx1[t] == m.x2[t]

m.x1dotcon = Constraint(m.t, rule=_x1dot)

def _x2dot(m, t):
if t == m.t.first():

return Constraint.Skip
return m.dx2[t] == -m.x2[t]+m.u[t]

m.x2dotcon = Constraint(m.t, rule=_x2dot)

def _x3dot(m, t):
if t == m.t.first():

return Constraint.Skip
return m.dx3[t] == m.x1[t]**2+m.x2[t]**2+0.005*m.u[t]**2

m.x3dotcon = Constraint(m.t, rule=_x3dot)

204 11 Differential Algebraic Equations

Because differential equations are formulated as constraints, the pyomo.dae pack-
age does not impose a particular form or structure on the differential equations. The
differential equations will by default be enforced at the boundaries of the continuous
domain. Depending on the dynamic model, this might not be desired. You can use
Constraint.Skip to override the enforcement of a differential equation at one
or more bounds of a continuous domain.

The last important aspect of any dynamic optimization problem is the specifica-
tion of initial or boundary conditions. This can be achieved either by explicitly in-
dexing a Var or DerivativeVar with one of the bounds of a
ContinuousSet or by using the ’first’ or ’last’ accessor functions on the
ContinuousSet. For example, the initial conditions for the optimal control ex-
ample can be expressed as:

def _init(m):
yield m.x1[0] == 0
yield m.x2[m.t.first()] == -1
yield m.x3[m.t.first()] == 0

m.init_conditions = ConstraintList(rule=_init)

Here we have grouped all the initial conditions into a single ConstraintList
component, but they could also be formulated as individual constraints.

The last pieces of our optimal control example, the objective function (11.1) and
the path constraint (11.5) are implemented with:

m.obj = Objective(expr=m.x3[m.tf])

def _con(m, t):
return m.x2[t]-8*(t-0.5)**2+0.5 <= 0

m.con = Constraint(m.t, rule=_con)

11.3 Solving Pyomo Models with DAEs

Having formulated a Pyomo model with differential equations, we now describe
how to solve it. None of the optimization solvers interfaced with Pyomo can cur-
rently handle differential equations directly. The only solution technique currently
included with pyomo.dae is a simultaneous discretization approach, also called
direct transcription. This approach discretizes the continuous domains in the model
and approximates the differential equations using algebraic equations defined at the
discretization points. The result of this discretization transformation is a purely al-
gebraic model that can be solved with a standard nonlinear programming solver.

There are two types of discretization schemes included in pyomo.dae: finite
difference and collocation. The schemes differ in the algebraic equations used to
approximate the derivative but they are applied using nearly identical syntax. A
discretization is applied to a particular continuous domain and propagated to each
derivative and constraint over that domain. After you specify the discretization
scheme and the resolution of the discretization (number of discretization points)

11.3 Solving Pyomo Models with DAEs 205

pyomo.dae will automatically add the necessary discretization points to the ap-
propriate ContinuousSet and add additional constraints to the Pyomo model
with the discretization equations. This has the effect of transforming the DAE model
into an algebraic model. Unlike other Pyomo transformations, pyomo.dae trans-
formations cannot currently be applied from the pyomo command line, you must
create a transformation object and apply a discretization transformation to a model.

11.3.1 Finite Difference Transformation

Finite difference methods approximate the derivative at a particular point using a
difference equation and are among the simplest discretization schemes to conceptu-
ally understand and implement. There are many variations which differ in the choice
of points used to approximate the derivative. The backward difference method, also
called implicit or backward Euler, is the most common variation. To illustrate the
discretization equations associated with this method we first define the following
derivative and differential equation (constraint):

(
dx(t)

dt
, f (x(t),u(t))

)
= 0, t ∈ [0,T]. (11.7)

After applying the backward difference method to the continuous domain t, the
resulting derivative and constraint pair is

dx
dt

∣∣∣∣
tk+1

=
xk+1 − xk

h
, k = 0, ...,N −1 (11.8)

g

(
dx
dt

∣∣∣∣
tk+1

, f (xk+1,uk+1)

)
= 0, k = 0, ...,N −1 (11.9)

where xk = x(tk), tk = kh, and h is the step size between discretization points or
the size of each finite element. When a finite difference transformation is applied
to a Pyomo model, the discretization equations such as (11.8) are automatically
generated and added to the Pyomo model as equality constraints.

The code required to apply the backward finite difference method to our optimal
control example is as follows:

discretizer = TransformationFactory(’dae.finite_difference’)
discretizer.apply_to(m, nfe=20, wrt=m.t, scheme=’BACKWARD’)

The nfe keyword argument stands for “number of finite elements” and is used
to specify the number of discretization points to be used in the discretization. The
scheme keyword specifies which finite difference method to apply. There currently
are three finite difference schemes included in pyomo.dae: backward finite differ-
ence (’BACKWARD’), central finite difference (’CENTRAL’), and forward finite

206 11 Differential Algebraic Equations

difference (’FORWARD’).

11.3.2 Collocation Transformation

The second type of discretization included in pyomo.dae is collocation or more
specifically, orthogonal collocation over finite elements. This approach works by
first breaking a continuous domain into N − 1 segments known as finite elements.
Over each of these segments, the profiles of the differential variables (variables
whose derivatives appear in the model) are approximated using polynomials. The
polynomials are defined using K collocation points that appear as discretization
points within each finite element. Continuity is enforced at the finite element bound-
aries for the differential variables. To provide a formal, mathematical representation
of this approach applied to the derivative and differential equation (11.7) we have:

dx
dt

∣∣∣∣
ti j

=
1
hi

K

∑
j=0

xi j
d� j(τk)

dτ
, k = 1, . . . ,K, i = 1, . . . ,N −1 (11.10)

0 = g

(
dx
dt

∣∣∣∣
ti j

, f (xik,uik)

)
, k = 1, . . . ,K, i = 1, . . . ,N −1 (11.11)

xi+1,0 =
K

∑
j=0

� j(1)xi j, i = 1, . . . ,N −1 (11.12)

where ti j = ti−1 +τ jhi, x(ti j) = xi j. Further, we note that the solution x(t) is interpo-
lated as follows:

x(t) =
K

∑
j=0

� j(τ)xi j, t ∈ [ti−1, ti], τ ∈ [0,1] (11.13)

� j(τ) =
K

∏
k=0,�= j

(τ − τk)

(τ j − τk)
. (11.14)

Collocation methods produce significantly more accurate algebraic approxima-
tions compared to finite difference methods. However, they are much harder to im-
plement manually. Variations of collocation methods differ in the functional repre-
sentation of the differential variable profile over each finite element as well as the
selection of the collocation points. As of this writing, the collocation transforma-
tions in pyomo.dae use Lagrange polynomials to represent differential variable
profiles. Two options are available for the selection of collocation points: shifted
Gauss-Radau roots (’LAGRANGE-RADAU’) and shifted Gauss-Legendre roots
(’LAGRANGE-LEGENDRE’).

11.4 Additional Features 207

A collocation discretization can be applied to a Pyomo model using:
discretizer = TransformationFactory(’dae.collocation’)
discretizer.apply_to(m,nfe=7,ncp=6,scheme=’LAGRANGE-RADAU’)

The nfe keyword argument specifies the number of finite elements and the ncp
argument specifies the number of collocation points within each finite element.

11.4 Additional Features

There are several advanced features included pyomo.dae. In this section, we
briefly mention two such features that will be of interest for users interested in PDE
constrained optimization or more advanced optimal control strategies.

11.4.1 Applying Multiple Discretizations

As mentioned previously, a separate discretization transformation can be applied to
each ContinuousSet that appears in the model. This means that different finite
difference or collocation schemes or a combination of the two can be applied to a
single Pyomo model. For example, if a Pyomo model had two ContinuousSets
(’model.t1’ and ’model.t2’), it might be discretized with any of the following com-
binations of discretization schemes:

Apply multiple finite difference schemes
discretizer = TransformationFactory(’dae.finite_difference’)
discretizer.apply_to(m, wrt=m.t1, nfe=10, scheme=’BACKWARD’)
discretizer.apply_to(m, wrt=m.t2, nfe=100, scheme=’FORWARD’)

Apply multiple collocation schemes
discretizer = TransformationFactory(’dae.collocation’)
discretizer.apply_to(m, wrt=m.t1, nfe=10, ncp=6, \

scheme=’LAGRANGE-LEGENDRE’)
discretizer.apply_to(m, wrt=m.t2, nfe=100, ncp=3, \

scheme=’LAGRANGE-RADAU’)

Apply a combination of finite difference and
collocation schemes
discretizer1 = \

TransformationFactory(’dae.finite_difference’)
discretizer2 = TransformationFactory(’dae.collocation’)
discretizer1.apply_to(m, wrt=m.t1, nfe=10, scheme=’BACKWARD)
discretizer2.apply_to(m, wrt=m.t2, nfe=100, ncp=3, \

scheme=’LAGRANGE-RADAU’)

208 11 Differential Algebraic Equations

11.4.2 Restricting Control Input Profiles

One of the main design considerations for the pyomo.dae package was the exten-
sibility of the package to include general implementations of common operations
applied to dynamic optimization problems. One such common operation in the area
of optimal control is restricting the control input to have a certain profile, typi-
cally piecewise constant or piecewise linear. These profiles are often desired when
a model has been discretized using collocation over finite elements and the con-
trol variable is restricted to be constant over each finite element. The pyomo.dae
package includes a function for doing this after a collocation discretization has been
applied to a model. It works by reducing the number of free collocation points for a
particular variable. For example, to restrict our control input u to be piecewise con-
stant in our small optimal control problem you would add the following line right
after applying a discretization transformation:

discretizer.reduce_collocation_points(m, var=m.u, ncp=1, \
contset=m.t)

The ncp keyword argument specifies the number of free collocation points per finite
element for the variable specified by the keyword var. Specifying ncp=1 restricts
u to have a single free collocation point (or degree of freedom) rendering it constant
over each finite element. The function works by adding constraints to the discretized
model which force any extra, undesired collocation points to be interpolated from
the others.

11.4.3 Plotting

After formulating, discretizing, and solving a dynamic optimization problem,
pyomo.dae makes it easy to plot the resulting dynamic profiles. Because a
ContinuousSet is populated with actual numerical values, the user can directly
create Python lists from it for plotting. Any variable indexed by a ContinuousSet
will have a value for each point in the ContinuousSet, after the model has been
solved. Therefore, creating a Python list for the variable values is just as straightfor-
ward as for a ContinuousSet

The Python script shown below puts everything together. Assuming the Pyomo
model has been declared and saved in a separate file, the script shows how to apply
a discretization and solve the model.

from pyomo.environ import *
from pyomo.dae import *
from path_constraint import m

Discretize model using Orthogonal Collocation
discretizer = TransformationFactory(’dae.collocation’)
discretizer.apply_to(m,nfe=7,ncp=6,scheme=’LAGRANGE-RADAU’)

11.4 Additional Features 209

discretizer.reduce_collocation_points(m, var=m.u, ncp=1, \
contset=m.t)

solver=SolverFactory(’ipopt’)
results = solver.solve(m, tee=True)

Finally, the code below shows an example implementation of a plotter function using
matplotlib for plotting. The resulting figure is also shown below.

def plotter(subplot, x, *y, **kwds):
plt.subplot(subplot)
for i,_y in enumerate(y):

plt.plot(list(x), [value(_y[t]) for t in x], \
’brgcmk’[i%6])

if kwds.get(’points’, False):
plt.plot(list(x), [value(_y[t]) for t in x], ’o’)

plt.title(kwds.get(’title’,’’))
plt.legend(tuple(_y.name for _y in y))
plt.xlabel(x.name)

import matplotlib.pyplot as plt
plotter(121, m.t, m.x1, m.x2, title=’Differential \

Variables’)
plotter(122, m.t, m.u, title=’Control Variable’, \

points=True)
plt.show()

Fig. 11.1: Plot produced by matplotlib for the optimal control example

Chapter 12

Mathematical Programs with Equilibrium

Constraints

Abstract This chapter documents how to formulate mathematical programs with
equilibrium constraints (MPECs), which naturally arise in a wide range of engi-
neering and economic systems. We describe Pyomo components for complemen-
tarity conditions, and transformation capabilities that automate the reformulation
of MPEC models, and meta-solvers that leverage these transformations to support
global and local optimization of MPEC models.

12.1 Introduction

Mathematical Programs with Equilibrium Constraint (MPEC) problems arise in a
large number of applications in engineering and economic systems [23, 60, 68].
An MPEC is an optimization problem that includes equilibrium constraints in the
form of complementarity conditions. Equilibrium constraints naturally arise as the
solution to an optimization subproblem (e.g., for bilevel programs), variational in-
equalities, and complementarity problems [40].

Since MPEC problems frequently arise in practice, many algebraic modeling lan-
guages (AML) have integrated capabilities for expressing complementarity condi-
tions [63], including AMLs like AIMMS [1], AMPL [2, 29], GAMS [31], MAT-
LAB [62] and YALMIP [58]. In this chapter, we describe new functionality in
Pyomo for expressing and optimizing MPEC models. MPEC models can be eas-
ily expressed with Pyomo modeling components for complementarity conditions.
Further, Pyomo’s object-oriented design naturally supports the ability to automate
the reformulation of MPEC models into other forms (e.g., disjunctive programs).
We describe Pyomo meta-solvers that transform MPECs as MIP or NLP problems,
which are then optimized with standard solvers. Further, we describe interfaces to
specialized mixed complementarity problem solvers, which solve MPEC problems
expressed without an optimization objective.

211© Springer International Publishing AG 2017
W.E. Hart et al., Pyomo — Optimization Modeling in Python, Springer Optimization
and Its Applications 67, DOI 10.1007/978-3-319-58821-6_12

212 12 Mathematical Programs with Equilibrium Constraints

12.2 Modeling Equilibrium Conditions

12.2.1 Complementarity Conditions

Ferris et al. [24] note that there are a few fundamental forms that account for a wide
range of complementarity conditions that arise in practice. Consider a variable x and
function g(x). The classical form of complementarity condition can be expressed as

x ≥ 0 ⊥ g(x)≥ 0,

which expresses the complementarity restriction that at least one of these must hold
with equality. When the variable x is bounded such that x ∈ [l,u], then a mixed
complementarity condition can be expressed as

l ≤ x ≤ u ⊥ g(x),

which expresses the complementarity restriction that at least one of the following
must hold:

x = l and g(x)≥ 0,
x = u and g(x)≤ 0,

or l < x < u and g(x) = 0.

These forms can be generalized by substituting a function f (x) for the variable
x. Thus, a generalized mixed complementarity condition can be expressed as

l ≤ f (x)≤ u ⊥ g(x),

which expresses the complementarity restriction that at least one of the following
must hold:

f (x) = l and g(x)≥ 0,
f (x) = u and g(x)≤ 0,

or l < f (x)< u and g(x) = 0.

For completeness, note that the complementarity condition

f (x)⊥ g(x) = 0

is a special case where the function f (x) is unbounded.

12.2.2 Complementarity Expressions

The design of complementarity conditions in Pyomo relies on the specification of
Pyomo constraint expressions. A Pyomo constraint expression defines an equality,
a simple inequality, or a pair of inequalities. For example:

12.2 Modeling Equilibrium Conditions 213

expr1 = expr2
expr1 <= expr2
const1 <= expr2 <= const2

where consti are constant arithmetic expressions that may only contain variables
that fixed, and expri are arithmetic expressions that contain unfixed variables.

A complementarity condition is defined with a pair of constraint expressions

l1 <= expr1 <= u1 ⊥ l2 <= expr2 <= u2,

where exactly two of the constant bounds l1, u1, l2 and u2 are finite. The non-finite
bounds values are omitted in practice, so this condition directly describes a classical
or mixed complementarity condition. Additionally, a complementarity condition can
be expressed with a simple inequality:

l1 <= expr1 <= u1 ⊥ expr2 <= expr3.

This complementarity condition is implicitly transformed to a form with constant
bounds:

l1 <= expr1 <= u1 ⊥ expr2 − expr3 <= 0.

12.2.3 Modeling Mixed-Complementarity Conditions

Pyomo employs an object-oriented strategy for representing models. Consequently,
Pyomo’s modeling capabilities can be extended by defining new modeling compo-
nents. Pyomo’s pyomo.mpec package defines the Complementarity compo-
nent that is used to declare complementarity conditions.

For example, consider the ralph1 problem in MacMPEC [61]:

min 2x− y
0 ≤ y ⊥ y ≥ x
x,y ≥ 0

The following script defines a Pyomo model for ralph1:
ralph1.py
from pyomo.environ import *
from pyomo.mpec import *

model = ConcreteModel()

model.x = Var(within=NonNegativeReals)
model.y = Var(within=NonNegativeReals)

model.f1 = Objective(expr=2*model.x - model.y)

model.compl = Complementarity(

214 12 Mathematical Programs with Equilibrium Constraints

expr=complements(0 <= model.y,
model.y >= model.x))

The first lines in this script import Pyomo packages. The pyomo.environ pack-
ages initializes Pyomo’s environment, and pyomo.mpec defines modeling com-
ponents for complementarity conditions. The subsequent lines in this script create
a model, declare variables x and y, declare an objective f1, and declare a comple-
mentarity condition compl.

The complementarity condition is declared with the Complementarity com-
ponent. In the simplest case, this Python class takes a keyword argument expr
that contains the value of the complements function. This function accepts two
Pyomo constraint expressions that are used to declare a complementarity condition.

Pyomo also supports indexed components, where a set of components are ini-
tialized over an index set using a construction rule. Thus, the Complementarity
component can be declared with an index set. For example, consider the following
model, indexed:

min ∑n
i=1 i(xi −1)2

0 ≤ xi ⊥ 0 ≤ xi+1 i = 1, . . . ,n−1

The following script defines a Pyomo model for indexed with n = 5:
ex1a.py
from pyomo.environ import *
from pyomo.mpec import *

n = 5

model = ConcreteModel()

model.x = Var(range(1,n+1))

model.f = Objective(expr=sum(i*(model.x[i]-1)**2
for i in range(1,n+1)))

def compl_(model, i):
return complements(model.x[i] >= 0, model.x[i+1] >= 0)

model.compl = Complementarity(range(1,n), rule=compl_)

The complementarity conditions are defined with a single Complementarity
component that is indexed over the set 1, . . . ,n−1 and initialized with a construction
rule compl . This rule is a function that accepts a model instance and an index, and
returns the i-th complementarity condition.

The declared set of indexes may be a superset of the indices that define comple-
mentarity conditions. If a construction rule returns Complementarity.Skip,
then the corresponding index is skipped. For example:

12.2 Modeling Equilibrium Conditions 215

ex1d.py
from pyomo.environ import *
from pyomo.mpec import *

n = 5

model = ConcreteModel()

model.x = Var(range(1,n+1))

model.f = Objective(expr=sum(i*(model.x[i]-1)**2
for i in range(1,n+1)))

def compl_(model, i):
if i == n:

return Complementarity.Skip
return complements(model.x[i] >= 0, model.x[i+1] >= 0)

model.compl = Complementarity(range(1,n+1), rule=compl_)

This example can also be expressed with the ComplementarityList com-
ponent:

ex1b.py
from pyomo.environ import *
from pyomo.mpec import *

n = 5

model = ConcreteModel()

model.x = Var(range(1,n+1))

model.f = Objective(expr=sum(i*(model.x[i]-1)**2
for i in range(1,n+1)))

model.compl = ComplementarityList()
model.compl.add(complements(model.x[1]>=0, model.x[2]>=0))
model.compl.add(complements(model.x[2]>=0, model.x[3]>=0))
model.compl.add(complements(model.x[3]>=0, model.x[4]>=0))
model.compl.add(complements(model.x[4]>=0, model.x[5]>=0))

This component defines a list of complementarity conditions. The list index can be
used in Pyomo, but this component simplifies the declaration of models for which
the index values are not important. The ComplementarityList component can
also be defined with a rule that iteratively returns complementarity conditions:

ex1c.py
from pyomo.environ import *
from pyomo.mpec import *

n = 5

model = ConcreteModel()

216 12 Mathematical Programs with Equilibrium Constraints

model.x = Var(range(1,n+1))

model.f = Objective(expr=sum(i*(model.x[i]-1)**2
for i in range(1,n+1)))

def compl_(model):
yield complements(model.x[1] >= 0, model.x[2] >= 0)
yield complements(model.x[2] >= 0, model.x[3] >= 0)
yield complements(model.x[3] >= 0, model.x[4] >= 0)
yield complements(model.x[4] >= 0, model.x[5] >= 0)

model.compl = ComplementarityList(rule=compl_)

Similarly, the construction rule may be a list expression that generates a sequence
of complementarity conditions:

ex1e.py
from pyomo.environ import *
from pyomo.mpec import *

n = 5

model = ConcreteModel()

model.x = Var(range(1,n+1))

model.f = Objective(expr=sum(i*(model.x[i]-1)**2
for i in range(1,n+1)))

model.compl = ComplementarityList(
rule=(complements(model.x[i] >= 0, model.x[i+1] >= 0)

for i in range(1,n)))

12.3 MPEC Transformations

Pyomo’s object-oriented design supports the structured transformation of models.
Pyomo can iterate through model components as well as nested model blocks. Thus,
model components can be easily transformed locally, and global data can be col-
lected to support global transformations. Further, Pyomo components and blocks
can be activated and deactivated, which facilitates in place transformations that do
not require the creation of a separate copy of the original model.

Pyomo’s pyomo.mpec package defines several model transformations that can
be easily applied. For example, if model defines an MPEC model (as in our previ-
ous examples), then the following example illustrates how to apply a model trans-
formation:

xfrm = TransformationFactory("mpec.simple_nonlinear")
transformed = xfrm.create_using(model)

In this case, the mpec.simple nonlinear transformation is applied. The fol-

12.3 MPEC Transformations 217

lowing sections describe the transformations currently supported in pyomo.mpec.

12.3.1 Standard Form

In Pyomo, a complementarity condition is expressed a pair of constraint expressions

l1 <= expr1 <= u1 ⊥ l2 <= expr2 <= u2,

where exactly two of the constant bounds l1, u1, l2 and u2 are finite. The non-finite
bounds are typically omitted, but the value None can be used to express infinite
bounds. Additionally, each constraint expression can be expressed with a simple
inequality of the form

expr1 <= expr2.

The mpec.standard form transformation reformulates each complementar-
ity condition in a model into a standard form:

l1 <= expr <= u1 ⊥ l2 <= var <= u2,

where exactly two of the constant bounds l1, u1, l2 and u2 are finite, and either l2 is
zero or both l2 or u2 are finite.

Note that this transformation creates new variables and constraints as part of this
transformation. For example, the complementarity condition

1 ≤ x+ y ⊥ 1 ≤ 2x− y,

get re-expressed as the following:

1 ≤ x+ y
v = 2x− y−1
v ∈ R,v ≥ 0

For each complementary condition object, the new variable and constraints are
added as additional components within the complementarity object. Thus, the over-
all structure of the MPEC model is not changed by this transformation.

12.3.2 Simple Nonlinear

The mpec.simple nonlinear transformation begins by applying the
mpec.standard form transformation. Subsequently, a nonlinear constraint is
created that defines the complementarity condition. This is a simple nonlinear trans-
formation adapted from Ferris et al. [25], which can be described by three different
cases:

218 12 Mathematical Programs with Equilibrium Constraints

• If l1 is finite, then the following constraint is defined:

(expr− l1)∗ v ≤ ε

• If u1 is finite, then the following constraint is defined:

(u1 − expr)∗ v ≤ ε

• If l2 and u2 are both finite, then the following constraints are defined:

(var− l2)∗ expr ≤ ε
(var−u2)∗ expr ≤ ε

Each of these cases ensure that the complementarity condition is met when ε is zero.
For example, in the first case, we know that 0 ≤ v and 0 ≤ expr− l1. When ε is zero,
this constraint ensures that either v is zero or expr− l1 is zero.

This transformation uses the parameter mpec bound, which defines the value
for ε for every complementarity condition. This allows for the specification of a
relaxed nonlinear problem, which may be easier to optimize with some nonlinear
programming solvers. The default value of mpec bound is zero.

12.3.3 Simple Disjunction

The mpec.simple disjunction transformation expresses a complementarity
condition as a disjunctive program. We are given a complementarity condition de-
fined with a pair of constraint expressions

l1 <= expr1 <= u1 ⊥ l2 <= expr2 <= u2,

where exactly two of the constant bounds l1, u1, l2 and u2 are finite. Without loss of
generality, we assume that either l1 or u1 is finite.

This transformation can be described by three different cases:

• If the first constraint is an equality, then the complementarity condition is triv-
ially replaced by that equality constraint.

• If both bounds on the first constraint are finite but different, then the disjunction
has the form:⎡

⎣ Y1
l1 = expr1
expr2 ≥ 0

⎤
⎦∨⎡

⎣ Y2
expr1 = u1
expr2 ≤ 0

⎤
⎦∨⎡

⎣ Y3
l1 ≤ expr1 ≤ u1

expr2 = 0

⎤
⎦

Y1 �Y2 �Y3 = True

Y1,Y2,Y3 ∈ {True,False}

12.4 Solver Interfaces and Meta-Solvers 219

• Otherwise, each constraint is a simple inequality. The complementarity condi-
tion is reformulated as

0 <= expr1 ⊥ 0 <= expr2,

and the disjunction has the form:⎡
⎣ Y

0 = expr1
0 ≤ expr2

⎤
⎦∨⎡

⎣ ¬Y
0 ≤ expr1
0 = expr2

⎤
⎦

Y ∈ {True,False}
This transformation makes use of modeling components and transformations

from Pyomo’s pyomo.gdp package. The transformation expresses each of the dis-
junctive terms explicitly using Disjunct components and the select exactly one
logical condition using the Disjunction component. The transformation adds
the Disjunct and Disjunction components within the objects that represent
the complementarity conditions. It then recasts the modified complementarity com-
ponents into simple Block components. This localizes all changes to the model to
the individual complementarity components. Subsequent transformation of the dis-
junctive expressions to algebraic constraints can be effected through either Big-M
(gdp.bigm) or Convex Hull (gdp.chull) transformations.

12.3.4 AMPL Solver Interface

Solvers like PATH [22] have been tailored to work with the AMPL Solver Library
(ASL). AMPL uses nl files to communicate with solvers, which read nl files
with the ASL. Pyomo can also create nl files, and the mpec.nl transformation
processes Complementarity components into a canonical form that is suitable
for this format [24].

12.4 Solver Interfaces and Meta-Solvers

Pyomo supports interfaces to third-party solvers as well as meta-solvers that ap-
ply transformations and third-party solvers, perhaps in an iterative manner. The
pyomo.mpec package includes an interface to the PATH solver, as well as sev-
eral meta-solvers. These are described in this section, and examples are provided
that employ the pyomo command-line interface.

220 12 Mathematical Programs with Equilibrium Constraints

12.4.1 Nonlinear Reformulations

The mpec.simple nonlinear transformation provides a generic way for trans-
forming an MPEC into a nonlinear program. When the MPEC only has continuous
decision variables, the resulting model can be optimized by a wide range of solvers.

For example, the pyomo command-line interface allows the user to specify a
nonlinear solver and a model transformation that is applied to a model:

pyomo solve --solver=ipopt \
--transform=mpec.simple_nonlinear ex1a.py

This example illustrates the use of the ipopt interior-point solver to solve a
problem generated with the mpec.simple nonlinear transformation. When
a transformation is used directly like this, the results that are returned to the user
include decision variables for the transformed model. Pyomo does not have general
capabilities for mapping a solution back into the space from the original model. In
this example, the results object includes values for the x variables as well as the
variables v introduced when applying the transformation to the standard form (see
above).

Pyomo includes a meta-solver, mpec nlp that applies the nonlinear transfor-
mation, performs optimization, and then returns results for the original decision
variables. For example, mpec nlp executes the same logic as the previous pyomo
example:

pyomo solve --solver=mpec_nlp ex1a.py

Additionally, this meta-solver can also manipulate the ε values in the model, starting
with larger values and iteratively tightening them to generate a more accurate model.

pyomo solve --solver=mpec_nlp \
--solver-options="epsilon_initial=0.1 \

epsilon_final=1e-7" \
ex1a.py

This approach may be useful when using a nonlinear solver that has difficulty opti-
mizing with equality constraints.

12.4.2 Disjunctive Reformulations

The mpec.simple disjunction transformation provides a generic way for
transforming an MPEC into a disjunctive program. The mpec minlp solver ap-
plies this transformation to create a nonlinear disjunctive program, and then further
reformulates the disjunctive model using a “Big-M” transformation that is provided
by the pyomo.gdp package. The resulting transformation is similar to the reformu-
lation of bilevel models described by Fortuny-Amat and McCarl [28]. If the original
model was nonlinear, then the resulting model is a mixed-integer nonlinear pro-
gram (MINLP). Pyomo includes interfaces to solvers that use the AMPL Solver

12.4 Solver Interfaces and Meta-Solvers 221

Library (ASL), so mpec minlp can optimize nonlinear MPECs with a solver like
Couenne [15].

If the original model was a linear MPEC, then the resulting model is a mixed-
integer linear program that can be globally optimized (e.g., see Hu et al. [46], Júdice
[51]). For example, the pyomo command can be used to execute the mpec minlp
solver using a specified MIP solver:

pyomo solve --solver=mpec_minlp \
--solver-options="solver=glpk" ralph1.py

Note that Pyomo includes interfaces to a variety of commonly used MIP solvers,
including CPLEX, Gurobi, CBC, and GLPK.

12.4.3 PATH and the ASL Solver Interface

Pyomo’s solver interface for the AMPL Solver Library (ASL) applies the mpec.nl
transformation, writes an AMPL .nl file, executes an ASL solver, and then loads
the solution into the original model. Pyomo provides a custom interface to the PATH
solver [22], which simply allows the solver to be specified as path while the solver
executable is named pathamp.

The pyomo command can execute the PATH solver by simply specifying the
path solver name. For example, consider the munson1 problem from MCPLIB:

munson1.py
from pyomo.environ import *
from pyomo.mpec import *

model = ConcreteModel()

model.x1 = Var()
model.x2 = Var()
model.x3 = Var()

model.f1 = Complementarity(expr=complements(
model.x1 >= 0,
model.x1 + 2*model.x2 + 3*model.x3 >= 1))

model.f2 = Complementarity(expr=complements(
model.x2 >= 0,
model.x2 - model.x3 >= -1))

model.f3 = Complementarity(expr=complements(
model.x3 >= 0,
model.x1 + model.x2 >= -1))

This problem can be solved with the following command:
pyomo solve --solver=path munson1.py

222 12 Mathematical Programs with Equilibrium Constraints

12.5 Discussion

Pyomo supports the ability to model complementarity conditions in a manner that is
similar to other AMLs. For example, Pyomo’s pyomo.data package [72] includes
Pyomo formulations for many of the MacMPEC [61] and MCPLIB [20] models,
which were originally formulated in GAMS and AMPL. However, Pyomo does not
currently support related modeling capabilities for equilibrium models, variational
inequalities and embedded models, which are supported by the GAMS extended
mathematical programming framework [26].

The transformations and meta-solvers currently included in Pyomo illustrate
how Pyomo’s MPEC modeling capability can be leveraged. We expect these ca-
pabilities to mature and expand in response to application needs. For example, the
mpec.simple nonlinear transformation could be expanded to support refor-
mulations that are well-suited for sequential quadratic programming solvers [56].
Similarly, current meta-solvers could be extended to directly support the communi-
cation of suffix information from the solver back to the original model.

Chapter 13

Bilevel Programming

Abstract This chapter documents how to formulate bilevel programs, which model
adversarial behavior in a general manner. We describe new modeling components
that represent subproblems, modeling transformations for re-expressing models
with bilevel structure in other forms, and optimize bilevel programs with meta-
solvers that apply transformations and then perform optimization on the resulting
model. We illustrate the breadth of Pyomo’s modeling capabilities for bilevel pro-
grams, and we describe how Pyomo’s meta-solvers can perform local and global
optimization of bilevel programs.

13.1 Introduction

Many planning situations involve the analysis of several objectives that reflect a
hierarchy of decision-makers. For example, policy decisions are made at different
levels of a government, each of which has a different objective and decision space.
Similarly, robust planning against adversaries is often modeled with a 2-level hi-
erarchy, where the defensive planner makes decisions that account for adversarial
response.

Multilevel optimization techniques partition control over decision variables
amongst the levels. Decisions at each level of the hierarchy may be constrained
by decisions at other levels, and the objectives for each level may account for de-
cisions made at other levels. In practice, multilevel problems have proven difficult
to solve, and most of the literature has focused on bilevel programs, which model a
2-level hierarchy [8].

Although multilevel problems arise in many applications, few algebraic model-
ing languages (AML) have integrated capabilities for expressing these problems.
AMLs are high-level programming languages for describing and solving math-
ematical problems, particularly optimization-related problems [53]. AMLs pro-
vide a mechanism for defining variables and generating constraints with a con-
cise mathematical representation, which is essential for large-scale, real-world

223© Springer International Publishing AG 2017
W.E. Hart et al., Pyomo — Optimization Modeling in Python, Springer Optimization
and Its Applications 67, DOI 10.1007/978-3-319-58821-6_13

224 13 Bilevel Programming

problems that involve thousands or millions of constraints and variables. GAMS,
YALMIP and Pyomo provide explicit support for modeling bilevel programs. A
variety of other AMLs support the solution of bilevel programs through the expres-
sion of Karush-Kuhn-Tucker conditions and associated reformulations using mixed-
complementarity conditions, but these reformulations must be expressed by the user
in these AMLs.

Pyomo provides an intuitive syntax for expressing multilevel optimization prob-
lems. Multilevel models can be easily expressed with Pyomo modeling components
for submodels, which can be nested in a general manner. Further, Pyomo’s object-
oriented design naturally supports the ability to automate the reformulation of mul-
tilevel models into other forms. Pyomo can transform bilevel models for several
broad classes of problems. We describe Pyomo meta-solvers that transform bilevel
programs into mixed integer programs (MIP) or nonlinear programs (NLP), which
are then optimized with standard solvers.

13.2 Motivating Problems

In multilevel optimization problems, a subset of decision variables at each level is
constrained to take values associated with an optimal solution of a distinct, lower
level optimization problem. For example, a general formulation for bilevel programs
is

minx∈X ,y F(x,y)
s.t. G(x,y)≤ 0

y ∈ P(x)
(13.1)

where
P(x) = argminy∈Y f (x,y)

g(x,y)≤ 0

P(x) defines a lower-level problem, which may have multiple solutions. Here x is
the primary upper-level decision, and y is the anticipated lower-level decision.

When P(x) contains multiple solutions, this formulation ensures that the selected
value for y will minimize F(x,y). Consequently, this formulation has been called
optimistic or cooperative, since the selection of the lower-level decision variables
minimized the upper-level objective. Most research on bilevel programming has
considered this problem, since this formulation has an optimal solution under rea-
sonable assumptions.

The following subsections describe specializations of Equation (13.1) that will
be explored in greater detail throughout this chapter. These are well-studied classes
of bilevel programs that that can be reformulated into other canonical optimization
forms.

13.3 Modeling Bilevel Programs 225

13.2.1 Linear Bilevel Programs with Continuous Variables

Multilevel linear programming considers the case where decision variables are con-
tinuous, and both objectives and constraints are linear. In the 2-level case, we have
the following linear bilevel program:

minx,y cT
1 x+dT

1 y
s.t. A1x+B1y ≤ b1

x ≥ 0
miny cT

2 x+dT
2 y

s.t. A2x+B2y ≤ b2
y ≥ 0

(13.2)

13.2.2 Quadratic Min/Max

Consider the case where the lower-level decisions y do not constrain the upper-level
decisions. Let

X = {x | A1x ≤ b,x ≥ 0}
Then we have

minx∈X maxy≥0 cT
1 x+dT

1 y+ xT Qy
A2x+B2y ≤ b2

(13.3)

In our discussion below, we allow the xi to be binary without loss of generality.

13.3 Modeling Bilevel Programs

The pyomo.bilevel package extends Pyomo by defining a new modeling com-
ponent: SubModel. The SubModel component defines a subproblem that rep-
resents the lower level decisions in a bilevel program. This component is like a
Block component; any components can be added to a SubModel object. In gen-
eral, a submodel is expected to have an objective, one or more variables and it may
define constraints.

The SubModel class generalizes the Block component by including construc-
tor arguments that denote which variables in the submodel should be considered
fixed or variable. When expressions in a submodel refer to variables defined outside
of the submodel, the user needs to indicate whether these are fixed values defined
by an upper-level problem. Fixed variables are treated as constants within the sub-
model, but non-fixed variables are defined by the current submodel or by a lower-
level problem.

Consider the following example:

226 13 Bilevel Programming

minx,y,v x+ y+ v
s.t. x+ v ≥ 1.5

1 ≤ x ≤ 2
1 ≤ v ≤ 2
maxy,w x+w
s.t. y+w ≤ 2.5

1 ≤ y ≤ 2
1 ≤ w ≤ 2

(13.4)

The following Pyomo model defines four variables, x, v, sub.y and sub.w:
from pyomo.environ import *
from pyomo.bilevel import *

model = ConcreteModel()
model.x = Var(bounds=(1,2))
model.v = Var(bounds=(1,2))
model.sub = SubModel()
model.sub.y = Var(bounds=(1,2))
model.sub.w = Var(bounds=(-1,1))

model.o = Objective(expr=model.x + model.sub.y + model.v)
model.c = Constraint(expr=model.x + model.v >= 1.5)
model.sub.o = Objective(expr=model.x+model.sub.w, \

sense=maximize)
model.sub.c = Constraint(expr=model.sub.y + model.sub.w <= \

2.5)

Variables x and v are declared in the upper-level problem, and v only appears in the
upper-level problem. Variables sub.y and sub.w are declared in the submodel.
However, note that the sub.y variable appears in the upper-level problem, while
the sub.w variable only appears in the lower-level problem.

These modeling capabilities are quite general. Expressions in submodels can be
linear or nonlinear, convex or nonconvex, continuous or discontinuous, and more.
Additionally, submodels can be nested to an arbitrary degree. Thus, the range of
bilevel programs that can be expressed with Pyomo is quite broad. However, the
real challenge is solving these models. The following sections describe two general
strategies for solving the two classes of bilevel programs described in Section 13.2.

In each section we describe model transformations and their use in meta-solvers.
Pyomo’s object-oriented design supports the structured transformation of models.
Pyomo can iterate through model components as well as nested model blocks. Thus,
model components can be easily transformed locally, and global data can be col-
lected to support global transformations. Further, Pyomo components and blocks
can be activated and deactivated, which facilitates in place transformations that do
not require the creation of a separate copy of the original model.

13.4 Solving Linear Bilevel Programs 227

13.4 Solving Linear Bilevel Programs

We consider the formulation for linear bilevel programs described in Equation (13.2):

minx,y cT
1 x+dT

1 y
s.t. A1x+B1y ≤ b1

x ≥ 0
miny cT

2 x+dT
2 y

s.t. A2x+B2y ≤ b2
y ≥ 0

(13.2)

Following Bard [7], we can replace the lower-level problem with corresponding
optimality conditions. This transformation gives the following model:

min cT
1 x+dT

1 y
s.t. A1x+B1y ≤ b1

d2 +BT
2 u− v = 0

b2 −A2x−B2y ≥ 0 ⊥ u ≥ 0
y ≥ 0 ⊥ v ≥ 0
x ≥ 0,y ≥ 0

(13.5)

This transformation results in a mathematical program with equilibrium constraints
(MPEC).

Pyomo’s pyomo.bilevel package automates the application of this model
transformation. For example, if model defines an linear bilevel program, then the
code applies this transformation to change the model in place:

xfrm = TransformationFactory(’bilevel.linear_mpec’)
xfrm.apply_to(model)

The bilevel.linear mpec transformation modifies the model by creating a
new block of variables and constraints for the optimality conditions in the lower-
level problem.

A variety of solution strategies can leverage this transformation to support opti-
mization. Pyomo defines two meta-solvers, which apply the
bilevel.linear mpec transformation and then perform optimization with a
third-party solver.

Consider the following problem, which is Example 5.1.1. in Bard [7]:

minx,y x−4y
x ≥ 0

s.t. miny y
s.t. −x − y ≤ −3

−2x + y ≤ 0
2x + y ≤ 12
3x − 2y ≤ 4

(13.6)

228 13 Bilevel Programming

Note that the last constraint in this example is negated from the text in Bard [7];
this corrects an error in the example, which is reflected in Bard’s discussion of the
solution to this example. The Pyomo model for this problem is:

bard511.py
from pyomo.environ import *
from pyomo.bilevel import *

M = ConcreteModel()
M.x = Var(bounds=(0,None))
M.sub = SubModel()
M.sub.y = Var(bounds=(0,None))

M.o = Objective(expr=M.x - 4*M.sub.y, sense=minimize)

M.sub.o = Objective(expr=M.sub.y, sense=minimize)
M.sub.c1 = Constraint(expr=- M.x - M.sub.y <= -3)
M.sub.c2 = Constraint(expr=-2*M.x + M.sub.y <= 0)
M.sub.c3 = Constraint(expr= 2*M.x + M.sub.y <= 12)
M.sub.c4 = Constraint(expr= 3*M.x - 2*M.sub.y <= 4)

13.4.1 Global Optimization

Following Fortuny-amat and McCarl [28], Pyomo’s bilevel blp globalmeta-
solver chains together reformulations to generate the following sequence of models:

BLP ⇒ MPEC ⇒ GDP ⇒ MIP,

where GDP refers to generalized disjunctive programs. Note that this leverages ad-
vanced modeling capabilities in Pyomo for MPEC [41] and GDP.

Pyomo provides general support for solving MIPs with commercial and open-
source solvers. The bilevel blp globalmeta-solver applies these transforma-
tions, solves the resulting MIP, and translates the MIP solution back into the original
linear bilevel program. The result is a globally optimal solution. For example, the
pyomo command can be used to execute the mpec blp global solver using a
specified MIP solver:

pyomo solve --solver=bilevel_blp_global \
--solver-options="solver=glpk" bard511.py

Note that a “Big-M” transformation is used to convert the GDP model into a MIP.
The default M value is very large, which may make it difficult to solve the resulting
MIP problem. Hence, this solver includes a bigM option that can be used to specify
a problem-specific value:

pyomo solve --solver=bilevel_blp_global \
--solver-options="bigM=100 solver=glpk" \
bard511.py

13.5 Solving Quadratic Min-Max Bilevel Programs 229

13.4.2 Local Optimization

Pyomo’s bilevel blp local meta-solver chains together reformulations to
generate the following sequence of models:

BLP ⇒ MPEC ⇒ NLP.

This leverages model transformations in pyomo.gdp to transform an MPEC into
an NLP through a simple nonlinear transformation adapted from Ferris et al. [25].
For example, the complementarity condition

y ≥ 0 ⊥ w ≥ 0

is transformed to the constraints
y ≥ 0
w ≥ 0
yw ≤ ε.

Pyomo provides general support for solving NLPs with commercial and open-
source solvers. The bilevel blp local meta-solver applies these transforma-
tions, solves the resulting NLP, and translates the solution back into the original
linear bilevel program. In general, the result is a locally optimal solution. For ex-
ample, the pyomo command can be used to execute the mpec blp local solver
using a specified NLP solver:

pyomo solve --solver=bilevel_blp_local \
--solver-options="solver=ipopt" bard511.py

Note that the tolerance value ε is initially set to a small value, which some solvers
may have difficulty with. This value can be explicitly set with the mpec bound
option:

pyomo solve --solver=bilevel_blp_local \
--solver-options="mpec_bound=0.01 solver=ipopt" \
bard511.py

13.5 Solving Quadratic Min-Max Bilevel Programs

We consider the formulation for quadratic min-max bilevel programs described in
Equation (13.3):

minx∈X maxy≥0 cT
1 x+dT

1 y+ xT Qy
A2x+B2y ≤ b2

(13.3)

where
X = {x | A1x ≤ b,x ≥ 0}.

230 13 Bilevel Programming

The lower-level problem is linear, so we can replace the lower-level problem with
corresponding optimality conditions. Since, the objectives are opposite and the
upper-level constraints do not constrain the lower level decisions, we get a single
minimization problem. This transformation gives the following model:

min cT
1 x+(b2 −A2x)T ν

s.t. BT
2 ν ≥ d1 +QT x

A1x ≤ b1
x ≥ 0,ν ≥ 0

(13.7)

In Pyomo, this is implemented as the bilevel.linear dual transformation.
If A2 ≡ 0, then the lower-level problem does not constrain the upper-level deci-

sions. This is a simple case, where the transformation generates a linear program if
the upper-level decision variables x are continuous and a MIP if some or all of the x
are binary.

More generally, suppose that the upper-level decision variables x are binary and
A2 �≡ 0. We can linearize the quadratic terms in the objective using gdp.bilinear
transformation, which creates the following disjunctive representation:

min cT
1 x+bT

2 ν −1T z
s.t. BT

2 ν ≥ d1 +QT x
A1x ≤ b1(

xi = 0
zi = 0

)
∧
(

xi = 1
zi = AT

2 (∗, i)ν
)

xi ≥ {0,1},ν ≥ 0

(13.8)

Subsequently, this GDP can be transformed into a MIP using a Big-M transforma-
tion.

Consider the following network interdiction problem, for which an attacker elim-
inates links in a network to minimize the maximum flow through the network from
a fixed source s to a fixed destination t. Let N be the nodes in the network through
which flow occurs. Let yi j be a variable that indicates flow from node i to node j,
and let ci j be the maximum capacity on that arc. The attacker selects b variables
xi j; if xi j is one then the arc is removed. This network interdiction problem can be
written as:

minx∈X maxy η
∑i∈N yin = ∑ j∈N yn j ∀n ∈ N (flow balance constraint)
η ≤ ∑ j∈N ys j (node s flow)
η ≤ ∑i∈N yit (node t flow)
0 ≤ yi j ≤ ti j(1− xi j) ∀ arcs (i, j) (capacity constraint)

(13.9)

where

X =

{
x | xi j ∈ {0,1},∑

i, j
xi j ≤ b

}
.

The following Pyomo model describes this bilevel program:

13.5 Solving Quadratic Min-Max Bilevel Programs 231

interdiction.py
from pyomo.environ import *
from pyomo.bilevel import *
from interdiction_data import A, budget

INDEX = list(A.keys())

M = ConcreteModel()
M.x = Var(INDEX, within=Binary)
M.budget = Constraint(expr=summation(M.x) <= budget)
M.sub = SubModel()
M.sub.f = Var()
M.sub.y = Var(INDEX, within=NonNegativeReals)

Min/Max objectives
M.o = Objective(expr=M.sub.f, sense=minimize)
M.sub.o = Objective(expr=M.sub.f, sense=maximize)

Flow constraint
def flow_rule(M, n):

return sum(M.y[i,n] for i in sequence(0,4) if (i,n) in \
A) == sum(M.y[n,j] for j in sequence(1,5) if (n,j) \
in A)

M.sub.flow = Constraint(sequence(1,4), rule=flow_rule)

Source constraint
def s_rule(M):

model = M.model()
return model.sub.f <= sum(M.y[0,j] for j in \

sequence(1,4) if (0,j) in A)
M.sub.s = Constraint(rule=s_rule)

Destination constraint
def t_rule(M):

model = M.model()
return model.sub.f <= sum(M.y[j,5] for j in \

sequence(1,4) if (j,5) in A)
M.sub.t = Constraint(rule=t_rule)

Capacity constraint
def c_rule(M, i, j):

model = M.model()
return M.y[i,j] <= A[i,j]*(1-model.x[i,j])

M.sub.c = Constraint(INDEX, rule=c_rule)

In this example, the file interdiction data.py defines a simple network with
6 nodes (including s and t), adapted from an example by Will Traves:

232 13 Bilevel Programming

formation and then applies subsequent transformations when A2 �≡ 0.
pyomo solve --solver=bilevel_ld\

--solver-options="bigM=100 solver=glpk"\
interdiction.py

Note that this solver includes a bigM option that can be used to specify a problem-
specific value when a MIP is generated from a GDP.

13.6 Discussion

Note that Pyomo’s ability to model multilevel optimization problem extends far
beyond the bilevel programs that are currently supported. For example, declarations
of SubModel can be arbitrarily nested with clear semantics. For example, consider
the following trilevel model [88]:

minx,y,z x−4y+2z
s.t. −x− y ≤−3

−3x+2y− z ≥−10

miny,z x+ y− z
s.t. −2x+ y−2z ≤−1

2x+ y+4z ≤ 14

minz x−2y−2z
s.t. 2x− y− z ≤ 2

The following model illustrates how this trilevel model could be implemented in
Pyomo:

Pyomo’s bilevel ldmeta-solver applies the bilevel.linear dual trans-

13.6 Discussion 233

from pyomo.environ import *
from pyomo.bilevel import *

M = ConcreteModel()
M.x = Var()
M.s = SubModel()
M.s.y = Var()
M.s.s = SubModel()
M.s.s.z = Var()

M.o = Objective(expr= M.x - 4*M.s.y + 2*M.s.s.z)
M.c1 = Constraint(expr= - M.x - M.s.y <= -3)
M.c2 = Constraint(expr= -3*M.x + 2*M.s.y >= -10)
M.s.o = Objective(expr= M.x + M.s.y - M.s.s.z)
M.s.c1 = Constraint(expr=-2*M.x + M.s.y - 2*M.s.s.z <= -1)
M.s.c2 = Constraint(expr= 2*M.x + M.s.y + 4*M.s.s.z <= 14)
M.s.s.o = Objective(expr= M.x - 2*M.s.y - 2*M.s.s.z)
M.s.s.c = Constraint(expr=2*M.x - M.s.y - M.s.s.z <= 2)

Pyomo use of object-oriented model specification makes it fundamentally differ-
ent from the specification of bilevel models in GAMS and YALMIP. Both GAMS
and YALMIP allow users to specify expressions for variables, objectives and con-
straints, and then the users specifies which of these are associated with an upper-
level or lower-level problem. This design allows users to mix-and-match different
modeling components in a flexible manner. However, it is limited to a strictly bilevel
form. By contrast, Pyomo submodels can be nested in an arbitrary manner. This in-
cludes multilevel models, as was just illustrated. But it also allows for the specifica-
tion of a tree of nested submodels. For example, Pyomo supports the specification
of independent submodels at the same level, which can be used to model a single
agent cooperating with decisions for two independent agents that make subsequent
decisions.

Chapter 14

Scripting

Abstract This chapter illustrates the use of Python scripts for solution analysis, the
development of high-level algorithms and custom workflows. We discuss how to
script the standard workflow: build a model, solve the model, and then analyze the
solution. Pyomo also supports development of high-level algorithms and complex
workflows. This chapter also contains some larger examples, including a Sudoku
solver. Together, these scripting examples illustrate how Pyomo users can go be-
yond the simple use of the pyomo command to formulate, solve, and analyze opti-
mization models.

14.1 Introduction

In previous chapters, we have described how a generic optimization process can be
executed with Pyomo to construct a model, solve the model, and display the results.
The pyomo command can be used to apply a generic optimization process to a
specific model, so the typical user does not need to understand the details of the
functionality present in most Pyomo libraries. However, this command masks much
of the power underlying Pyomo.

The use of Python provides tremendous flexibility for the Pyomo modeling en-
vironment. With some AMLs, a new scripting language is defined that is unique to
the AML, and the developers of the package produce a parser for the new language.
This separates the user from the underlying code of the framework itself. With Py-
omo, Python is used for both the overall framework and the modeling environment.
This provides the user with complete control over the entire solution process giving
two important high-level capabilities:

• Pyomo users can leverage existing Python libraries for analysis of data both
before and after solving the optimization problem.

• Pyomo supports development of algorithms that require problem transforma-
tions and multiple solves of problems with different structure and data. When
coupled with the programming capabilities of Python, this allows users to build

235© Springer International Publishing AG 2017
W.E. Hart et al., Pyomo — Optimization Modeling in Python, Springer Optimization
and Its Applications 67, DOI 10.1007/978-3-319-58821-6_14

236 14 Scripting

high-level algorithms (e.g. Bender’s decomposition, MINLP solvers, multi-
stage initialization strategies).

In this chapter, we will discuss the basics of scripting with Pyomo. This func-
tionality will be demonstrated on some examples, including a Sudoku solver.

NOTE: This chapter shows the power of Pyomo that can be accessed through
scripting, and examples in this chapter may make use of methods on compo-
nents that are part of the core Pyomo infrastructure. The developers of Pyomo
try to maintain backwards compatibility where possible. However, note that the
methods described in this chapter are more likely to change than other capabil-
ities discussed in this book.

14.2 A Basic Optimization Script

In Chapter 3 we introduced a warehouse location problem. This problem solved for
the optimal locations to build warehouses to meet delivery demands. Please refer
back to Section 3.2 for a detailed description.

The following example highlights the three basic pieces found in almost any Py-
omo script: (1) creating a Pyomo model, (2) performing optimization of the Pyomo
model using a solver interface, and (3) interrogating the solution.

1 from pyomo.environ import *
2 from warehouse_data import *
3
4 # create the model
5 model = ConcreteModel(name="(WL)")
6 model.x = Var(N, M, bounds=(0,1))
7 model.y = Var(N, within=Binary)
8
9 def obj_rule(model):

10 return sum(d[n,m]*model.x[n,m] for n in N for m in \
M)

11 model.obj = Objective(rule=obj_rule)
12
13 def one_per_cust_rule(model, m):
14 return sum(model.x[n,m] for n in N) == 1
15 model.one_per_cust = Constraint(M, \

rule=one_per_cust_rule)
16
17 def warehouse_active_rule(model, n, m):
18 return model.x[n,m] <= model.y[n]
19 model.warehouse_active = Constraint(N, M, \

rule=warehouse_active_rule)
20

14.3 Creating and Modifying Pyomo Models 237

21 def num_warehouses_rule(model):
22 return sum(model.y[n] for n in N) <= P
23 model.num_warehouses = \

Constraint(rule=num_warehouses_rule)
24
25 # solve the model
26 solver = SolverFactory(’glpk’)
27 solver.solve(model)
28
29 # look at the solution
30 model.y.pprint()

In this example, line 1 contains the standard Pyomo import, and line 2 imports the
data. Lines 4 through 23 create the Pyomo model, lines 24 and 25 create the solver
and perform the optimization, and line 30 prints the values of the binary variables at
the solution.

Of course, Python allows scripting with Pyomo workflows that are much more
powerful than this simple example. In the next three sections, we describe:

1. how to generate the model and modify the model using mutable parameters and
other methods on Pyomo components

2. the mechanism for creating an interface to a solver, configuring the solver with
options, and interpreting the results object

3. methods for retrieving the solution, including accessing variable values in flat
or hierarchical models

NOTE: While scripting is possible with abstract models, it is most common
to interact with concrete models when scripting. Therefore, this chapter uses
concrete models in the examples. However, as described in Chapter 2, concrete
models can be created from abstract models with the create instance()
method.

14.3 Creating and Modifying Pyomo Models

In early stages of model design, it is often convenient to embed all data within the
model definition. This facilitates a rapid process for testing and extending a problem
formulation. The following example shows a minimalistic approach where the data,
model, and execution script are contained in a single file.

238 14 Scripting

from pyomo.environ import *

model = ConcreteModel()
model.x = Var()
model.o = Objective(expr= model.x)
model.c = Constraint(expr= model.x >= 1)

solver = SolverFactory("glpk")
results = solver.solve(model)

print(results)

An alternative strategy for setting up a model is to used a function that takes data
as inputs. The following example illustrates the warehouse location problem again,
this time defining a function to create the model.

from pyomo.environ import *

def create_wl_model(N, M, d, P):
create the model
model = ConcreteModel(name="(WL)")
model.x = Var(N, M, bounds=(0,1))
model.y = Var(N, within=Binary)

def obj_rule(model):
return sum(d[n,m]*model.x[n,m] for n in N for m in M)

model.obj = Objective(rule=obj_rule)

def one_per_cust_rule(model, m):
return sum(model.x[n,m] for n in N) == 1

model.one_per_cust = Constraint(M, \
rule=one_per_cust_rule)

def warehouse_active_rule(model, n, m):
return model.x[n,m] <= model.y[n]

model.warehouse_active = Constraint(N, M, \
rule=warehouse_active_rule)

def num_warehouses_rule(model):
return sum(model.y[n] for n in N) <= P

model.num_warehouses = \
Constraint(rule=num_warehouses_rule)

return model

This example defines a function named create wl model that takes in four argu-

that it then returns. The model can be created and solved using the following script:
ments (the data for this problem) used to define the constraints on aConcreteModel

14.3 Creating and Modifying Pyomo Models 239

from warehouse_data import *
import pyomo.environ as pe
import warehouse_function as wf

call function to create model
model = wf.create_wl_model(N, M, d, P)

solve the model
solver = pe.SolverFactory(’glpk’)
solver.solve(model)

look at the solution
model.y.pprint()

With this approach, multiple instantiations can easily be solved by invoking the
function with different inputs inside of a for loop:

from warehouse_data import *
import pyomo.environ as pe
import warehouse_function as wf

for pp in [1,2,3]:
call function to create model
model = wf.create_wl_model(N, M, d, pp)

solve the model
solver = pe.SolverFactory(’glpk’)
solver.solve(model)

look at the solution
print(’--- P = {0} ---’.format(pp))
model.y.pprint()

This example creates the model in a loop, providing different values of P (the max-
imum number of warehouses).

Encapsulating model construction in functions can be extended to include the
construction of blocks. Pyomo models or blocks can be added to other models in a
hierarchical fashion. Please see Chapter 8 for more details.

14.3.1 Modifying Model Parameters

In the example above, we solved the model for different values of the parameter P by
creating a new model every time through the loop. It is also possible to take a model
that has been solved, change the value of a parameter and solve it again. This re-
quires the use of mutable parameters, which are declared with the mutable=True
option.

The following example illustrates the use of mutable parameters in the warehouse
problem:

240 14 Scripting

from warehouse_data import *
from pyomo.environ import *

create the model
model = ConcreteModel(name="(WL)")
model.P = Param(initialize=P, mutable=True)
model.x = Var(N, M, bounds=(0,1))
model.y = Var(N, within=Binary)

def obj_rule(model):
return sum(d[n,m]*model.x[n,m] for n in N for m in M)

model.obj = Objective(rule=obj_rule)

def one_per_cust_rule(model, m):
return sum(model.x[n,m] for n in N) == 1

model.one_per_cust = Constraint(M, rule=one_per_cust_rule)

def warehouse_active_rule(model, n, m):
return model.x[n,m] <= model.y[n]

model.warehouse_active = Constraint(N, M, \
rule=warehouse_active_rule)

def num_warehouses_rule(model):
return sum(model.y[n] for n in N) <= model.P

model.num_warehouses = Constraint(rule=num_warehouses_rule)

execute the loop
for pp in [1,2,3]:

change the value of the parameter P
model.P = pp

solve the model
solver = SolverFactory(’glpk’)
solver.solve(model)

look at the solution
print(’--- P = {0} ---’.format(pp))
model.y.pprint()

The parameter model.P is declared mutable, so the loop does not create a new
model instance.

14.3.2 Modifying Model Structure

Within Pyomo, it is also possible to modify the structure of a model between solves.

• Pyomo allows addition of new modeling components. For examples, constraints
can be added or deleted to a component, and new components can be added to
a model.

14.3 Creating and Modifying Pyomo Models 241

• Modeling components can be activated and deactivated without changing the
data stored in the model. Pyomo simply stores a flag that indicates whether a
component is processed and included in the model sent to the solver.

• Variables can be treated as fixed or unfixed (the default).

The following example illustrates these methods for modify model structure:
from pyomo.environ import *

model = ConcreteModel()
model.x = Var(bounds=(0,5))
model.y = Var(bounds=(0,1))
model.con = Constraint(expr=model.x + model.y == 1.0)
model.obj = Objective(expr=model.y-model.x)

solve the problem
solver = SolverFactory(’glpk’)
solver.solve(model)
print(value(model.x)) # 1.0
print(value(model.y)) # 0.0

add a constraint
model.con2 = Constraint(expr=4.0*model.x + model.y == 2.0)
solver.solve(model)
print(value(model.x)) # 0.33
print(value(model.y)) # 0.66

deactivate a constraint
model.con.deactivate()
solver.solve(model)
print(value(model.x)) # 0.5
print(value(model.y)) # 0.0

activate a constraint
model.con.activate()
solver.solve(model)
print(value(model.x)) # 0.33
print(value(model.y)) # 0.66

delete a constraint
del model.con2
solver.solve(model)
print(value(model.x)) # 1.0
print(value(model.y)) # 0.0

fix the variable
model.x.fix(0.5)
solver.solve(model)
print(value(model.x)) # 0.5
print(value(model.y)) # 0.5

unfix the variable
model.x.unfix()
solver.solve(model)

242 14 Scripting

print(value(model.x)) # 1.0
print(value(model.y)) # 0.0

These basic capability provide a lot of flexibility, and later examples illustrate how
Pyomo supports the construction of complex workflows and meta-solvers.

14.4 Using Solvers

Pyomo models can be analyzed with a wide variety of optimization solvers, and
there are several types of solver interfaces in Pyomo:

• A shell solver is launched as a separate sub-process by running an executable
found on the user’s PATH environment. Pyomo interfaces with these solvers
through files; Pyomo generates a file description of the problem, launches the
solver, and then loads the results from log files and standard output files. This
is a common form of solver.

• A direct solver is executed as a subroutine. Pyomo interfaces with these solvers
through libraries that are installed and exposed in the form of Python packages.
This is an uncommon form of solver, since it relies on Python interfaces to
solver libraries.

• A meta-solver is a Python script that executes one-or-more other solvers. These
solvers are directly integrated into Pyomo, and they execute sub-solvers to per-
form optimization. Meta-solvers can support the application of sub-solvers to
sub-problems, and they also provide a simple way of interfacing to other classes
of solvers (e.g. ASL solvers).

Fortunately, the Pyomo interface is the same regardless of the solver type used.
As seen in Section 14.2 the SolverFactory function is used to construct a

solver interface object. The argument passed to the solver factory specifies the name
of the solver being used. In most cases, this is the name of the executable that will
be used to solve the problem; however, Pyomo supports shorter names for some
solvers. For example, the GLPK solver can be specified with

solver = SolverFactory(’glpk’)

The solve() method accepts a number of keyword arguments. Pyomo may
support multiple interfaces for some solvers, and the interface type can be specified
with the solver io keyword argument:

Construct solver object
solver = SolverFactory(’gurobi’)

Apply solver and load results into model
solver.solve(model, solver_io=’nl’)

Other keyword arguments include:

• logfile: The filename used to store output for shell solvers.
• solnfile: The filename used to store the solution for shell solvers.

14.5 Investigating the Solution 243

• load solutions: If this argument is True (the default), then solutions are
stored in the model. If False, then the results object keeps a raw representation
of the solutions.

• timelimit: The number of seconds that a shell solver is run before it is ter-
minated. (default is None)

• report timing: If this argument is True, then timing information is report
by the solver (default is False)

• tee: If this argument is True, then the solver output is both printed to the
standard output as well as saved to the log file. If False (the default), then the
solver output is only saved to the log file.

• suffixes: A list of suffixes that are exported to the solver.
• options: A dictionary of options to be passed to the underlying solver.

The options attribute can used to send solver specific options to the underlying
solver. In the following example, we pass the tee=True keyword argument to tell
Pyomo to send the solver output to the console, and we pass two solver-specific
options to GLPK (sending log output to warehouse.log, and turning off the
MIP presolver). Notice that some solver-specific options do not take values (e.g.
nointopt), but are rather simple flags to turn on or off particular behavior. For
these types of options, set the option value in the dictionary to None.

from warehouse_data import *
import pyomo.environ as pe
import warehouse_function as wf

call function to create model
model = wf.create_wl_model(N, M, d, P)

solve the model
solver = pe.SolverFactory(’glpk’)
solver_opt = dict()
solver_opt[’log’] = ’warehouse.log’
solver_opt[’nointopt’] = None
solver.solve(model, options=solver_opt)

look at the solution
model.y.pprint()

14.5 Investigating the Solution

After a model is solved, there are two aspects of the solution to be investigated. The
first is the solution status returned from the solver, and the second is the value of the
variables and objective function. The solution status can usually be viewed in the
console by passing tee=True into the solve command, but there are many times
when one would like to read this status in code. This section will discuss the results
object, and show how to retrieve values from variables after the solve.

244 14 Scripting

14.5.1 Solver Results

The solve() method returns a results object that contains status information from
the solver. If the solve completes successfully, the solution values are loaded directly
into the model. This consists of three steps: (1) storing solutions in the solutions
attribute of the model, (2) load the values of variables from a selected solution, and
(3) remove solutions from the results object. Afterwards, the results object only
contains meta-data about information about the model and the optimization process.
For memory efficiency, it no longer contains the solution itself.

NOTE: By default, when the solver completes, the solution is automatically
loaded into the model object and removed from the results object. Because of
this, the results object will indicate that it has 0 solutions.

Typically, a solver only returns a single solution; however, there are cases where
a solver might return multiple solutions (a pool of solutions). Because of this, the
results object supports an interface that looks like a dictionary of lists containing
more than one solution. However, for the most common case of a single solution,
the results object supports a simple attribute-like interface. The results object re-
turned from the solve() method contains a problem attribute and a solver
attribute that contain information about the problem statistics and the solver status
respectively.

The results.solver attribute contains a SolverInformation object.
Key attributes of this object are shown in the table below. Examples illustrating the
use of the results object are provided later in this chapter.

Table 14.1: Key attributes of the SolverInformation object
Attribute
status Returns the solver status as a PyUtilib.Enum SolverStatus

that can be: ok, warning, error, aborted, or unknown.

termination condition Returns the specific termination condition as reported by the
solver. This is a PyUtilib enum TerminationCondition
that can have different values, including optimal,
infeasible, or unbounded. There are many different
solver outcomes, and depending on the solver, you may see
other outcomes.

termination message String message returned by the solver summarizing the termina-
tion status.

14.5 Investigating the Solution 245

14.5.2 Retrieving Variable Values

After performing optimization, the solver plugin automatically loads the solution
into the model instance. This provides a convenient way to analyze the optimization
results by accessing the solution through values stored in the model components.

It is straightforward to retrieve the value of a variable using the value() func-
tion. This can be used for both scalar variables and indices of indexed variables.
This is shown in the example below.

model.y.pprint()
print(value(model.z))
print(value(model.y[’Ashland’]))

This example illustrates the use of the .pprint() method, which prints a pre-
formatted set of output for the variable. In the next two lines, you see printing a
scalar variable value, and the value of a particular index of an indexed variable.

NOTE: It is common to forget the value() function when retrieving values
from Pyomo Var components. For example, in the code shown below, Python
will actually print the representation of the variable object itself, not the value.

print(model.z)

In this case, the code will print the variable name (z), not the value.

This retrieval of variable values is also important when comparing variables.
Consider the following example.

1 from pyomo.environ import *
2
3 model = ConcreteModel()
4 model.u = Var(initialize=1.0)
5 model.v = Var(initialize=1.0)
6
7 # comparing values
8 print(value(model.u) == value(model.v)) # True
9

10 # comparing variables
11 print(model.u == model.v) # "u == v"
12
13 # following prints "Same"
14 if model.u == model.v:
15 print(’Same’)
16 else:
17 print(’Different’)

In line 8, the value of two variables are compared, and as expected this generates
the value True. However, in line 11 the variables are compared directly, which
will print string ’u == v’. In this line, Pyomo is actually creating an expression

246 14 Scripting

u is equal to v, so the value printed is the string representation of that expression.
Further confusing the situation, lines 14-17 will actually print Same to the console.
In the condition on line 14, Pyomo creates the expression u == v, and then that
condition is evaluated. In this example, the evaluation returns True.

This example illustrates the creation of implicit expressions, how they can lead
to unintended results and how they can lead to normally expected results. It can
be difficult to predict the behavior of Pyomo expressions, so users are strongly en-
couraged to avoid generating expressions except as part of the model construction
process. Comparisons of the values of variable (e.g. line 8) do not generate a Pyomo
expression, so this type of comparison is always safe!

The previous examples illustrate how to access variables by name or scalar index.
It is also straightforward to iterate over values in an indexed variable.

for i in model.y:
print(’{0} = {1}’.format(model.y[i], value(model.y[i])))

Similarly, the following example shows how to iterate over variables in a generic
manner, which is useful in many scripting contexts:

for v in model.component_objects(Var):
for index in v:

print(’{0} = {1}’.format(v[index], value(v[index])))

This approach can be used for other Pyomo components as well.

14.6 Scripting Examples

In this section, we will show a few scripting examples that illustrate the capabilities
shown above. These are still relatively simple examples, and more examples can be
found in the Pyomo Gallery (see www.pyomo.org).

14.6.1 Warehouse Location Loop and Plotting

The following example formulates the warehouse location problem and solves it
repeatedly to find every possible solution. Each time a solution is found, a new cut
is added that excludes that solution, and the problem is solved again to find the
next solution. This process is repeated until the problem is infeasible, and no more
solutions can be found. The ConstraintList component is used to contain the
list of cuts; each time through the loop a new cut is added to this component.

from warehouse_data import *
from pyomo.environ import *
from pyomo.opt import TerminationCondition
import warehouse_function as wf
import matplotlib.pyplot as plt

http://www.pyomo.org

14.6 Scripting Examples 247

call function to create model
model = wf.create_wl_model(N, M, d, P)
model.integer_cuts = ConstraintList()
objective_values = list()
done = False
while not done:

solve the model
solver = SolverFactory(’glpk’)
results = solver.solve(model)
objective_values.append(value(model.obj))
term_cond = results.solver.termination_condition
print(’’)
print(’--- Solver Status: {0} ---’.format(term_cond))

if term_cond != TerminationCondition.optimal:
done = True

else:
look at the solution
print(’Optimal Obj. Value = \

{0}’.format(value(model.obj)))
model.y.pprint()

create new integer cut to exclude this solution
N_True = [i for i in N if value(model.y[i]) > 0.5]
N_False = [i for i in N if value(model.y[i]) < 0.5]
expr1 = sum(model.y[i] for i in N_True)
expr2 = sum(model.y[i] for i in N_False)
model.integer_cuts.add(sum(model.y[i] for i in \

N_True) \
- sum(model.y[i] for i in N_False) \
<= len(N_True)-1)

x = range(len(objective_values))
plt.bar(x, objective_values, align=’center’)
plt.gca().set_xticks(x)
plt.xlabel(’Solution Number’)
plt.ylabel(’Optimal Obj. Value’)
plt.savefig(’warehouse_function_cuts.pdf’)
#plt.show()

This example generates console output that shows each of the solutions encoun-
tered. It also generates Figure 14.1 with the package matplotlib that shows the
value of the optimal objective function for each solution obtained.

14.6.2 A Sudoku Solver

In this section, we further illustrate the power of scripting in Python with Pyomo.
Specifically, we will solve a feasibility problem and show how to find all the feasible
solutions to the Sudoku puzzle. We will solve the problem once, identify a feasible

248 14 Scripting

Fig. 14.1: Optimal objective value for a series of solutions obtained from the warehouse location
problem.

solution, then add an integer cut to remove this solution from the list of possible
solutions, and solve the problem again.

A typical Sudoku puzzle is shown in Figure 14.2. In this puzzle, one must fill

Fig. 14.2: An example of a Sudoku puzzle prior to solving.

in the missing cells with the numbers 1 through 9. Each row must have only one

14.6 Scripting Examples 249

occurrence of each number. Likewise, each column must only have one occurrence
of each number. Finally, each of the nine sub-squares must also only have one oc-
currence of each number. We will define the sets ROWS, COLS, and VALUES (all of
which contain the integers 1 through 9. We will then define a binary variable y[r,c,v]
to indicate which number is in each of the cells. If y[r,c,v] = 1, then this implies that
the value v has been selected for the cell identified by row r and column c.

Using this notation, it is relatively straightforward to define the constraints that
restrict the allowable numbers in each row and column as,

∑
c∈COLS

y[r,c,v] = 1 ∀ r ∈ ROWS, v ∈VALUES

∑
r∈ROWS

y[r,c,v] = 1 ∀ c ∈COLS, v ∈VALUES

The Pyomo code for these constraints is:
exactly one number in each row
def _RowCon(model, r, v):

return sum(model.y[r,c,v] for c in model.COLS) == 1
model.RowCon = Constraint(model.ROWS, model.VALUES, \

rule=_RowCon)

exactly one nubmer in each column
def _ColCon(model, c, v):

return sum(model.y[r,c,v] for r in model.ROWS) == 1
model.ColCon = Constraint(model.COLS, model.VALUES, \

rule=_ColCon)

Defining the constraint that restricts the number for the sub-squares is a little
more difficult. To make the definition easier, we define a set with an index for each
of the sub-squares. Then, we define a list of tuples that describes the map from
each of the sub-squares to the list of corresponding indices. This list, along with
the corresponding sub-squares constraint, is defined in the complete code listing for
this example at the end of this section. The desired constraint for the sub-squares is
given by,

∑
(r,c)∈ssmap[i]

y[r,c,v] = 1 ∀ i ∈ SUBSQUARES.

The Pyomo code for this constraint is:
exactly one number in each subsquare
def _SqCon(model, s, v):

return sum(model.y[r,c,v] for (r,c) in \
subsq_to_row_col[s]) == 1

model.SqCon = Constraint(model.SUBSQUARES, \
model.VALUES, rule=_SqCon)

The last key constraint for the Sudoku problem is to make sure that there is only
one value allowed per cell. The constraint is given by,

250 14 Scripting

∑
v∈VALUES

y[r,c,v] = 1 ∀ r ∈ ROWS, c ∈COLS.

The Pyomo code for this constraint is:
exactly one number in each cell
def _ValueCon(model, r, c):

return sum(model.y[r,c,v] for v in model.VALUES) == 1
model.ValueCon = Constraint(model.ROWS, model.COLS, \

rule=_ValueCon)

When designing Sudoku puzzles, two features may change frequently: the initial
board layout and the number of integer cuts to remove previously seen solutions.
One way to handle this variety of potential inputs is to define a function to create
the model from a starting puzzle as well as a list of integer cuts. However, such a
function would be inefficient for our purposes since we would be creating an entirely
new model each time we wanted to add a single new integer cut after each solve.
Thus, we will define two separate functions: one that creates the initial model given
a Sudoku board, and another that adds a new integer cut to the given model based
on the current value of its variables.

We define an integer cut using two sets. The first set S0 consists of indices for
those variables whose current solution is 0, and the second set S1 consists of indices
for those variables whose current solution is 1. Given these two sets, an integer cut
constraint that would prevent such a solution from appearing again is defined by,

∑
(r,c,v)∈S0

y[r,c,v]+ ∑
(r,c,v)∈S1

(1− y[r,c,v])≥ 1.

The following Python code defines three functions. The first,
create sudoku model creates the Pyomo model for the Sudoku problem. The
second, add integer cut creates an integer cut corresponding to the current
solution and adds it to the ConstraintList called IntegerCuts. The third,
print solution prints the current solution in the form of a Sudoku board.

from pyomo.environ import *

create a standard python dict for mapping subsquares to
the list (row,col) entries
subsq_to_row_col = dict()

subsq_to_row_col[1] = [(i,j) for i in range(1,4) for j in range(1,4)]
subsq_to_row_col[2] = [(i,j) for i in range(1,4) for j in range(4,7)]
subsq_to_row_col[3] = [(i,j) for i in range(1,4) for j in range(7,10)]

subsq_to_row_col[4] = [(i,j) for i in range(4,7) for j in range(1,4)]
subsq_to_row_col[5] = [(i,j) for i in range(4,7) for j in range(4,7)]
subsq_to_row_col[6] = [(i,j) for i in range(4,7) for j in range(7,10)]

subsq_to_row_col[7] = [(i,j) for i in range(7,10) for j in range(1,4)]
subsq_to_row_col[8] = [(i,j) for i in range(7,10) for j in range(4,7)]
subsq_to_row_col[9] = [(i,j) for i in range(7,10) for j in range(7,10)]

creates the sudoku model for a 10x10 board, where the
input board is a list of fixed numbers specified in
(row, col, val) tuples.
def create_sudoku_model(board):

14.6 Scripting Examples 251

model = ConcreteModel()

store the starting board for the model
model.board = board

create sets for rows columns and squares
model.ROWS = RangeSet(1,9)
model.COLS = RangeSet(1,9)
model.SUBSQUARES = RangeSet(1,9)
model.VALUES = RangeSet(1,9)

create the binary variables to define the values
model.y = Var(model.ROWS, model.COLS, model.VALUES, within=Binary)

fix variables based on the current board
for (r,c,v) in board:

model.y[r,c,v].fix(1)

create the objective - this is a feasibility problem
so we just make it a constant
model.obj = Objective(expr= 1.0)

exactly one number in each row
def _RowCon(model, r, v):

return sum(model.y[r,c,v] for c in model.COLS) == 1
model.RowCon = Constraint(model.ROWS, model.VALUES, rule=_RowCon)

exactly one nubmer in each column
def _ColCon(model, c, v):

return sum(model.y[r,c,v] for r in model.ROWS) == 1
model.ColCon = Constraint(model.COLS, model.VALUES, rule=_ColCon)

exactly one number in each subsquare
def _SqCon(model, s, v):

return sum(model.y[r,c,v] for (r,c) in subsq_to_row_col[s]) == 1
model.SqCon = Constraint(model.SUBSQUARES, model.VALUES, rule=_SqCon)

exactly one number in each cell
def _ValueCon(model, r, c):

return sum(model.y[r,c,v] for v in model.VALUES) == 1
model.ValueCon = Constraint(model.ROWS, model.COLS, rule=_ValueCon)

return model

use this function to add a new integer cut to the model.
def add_integer_cut(model):

add the ConstraintList to store the IntegerCuts if
it does not already exist
if not hasattr(model, "IntegerCuts"):

model.IntegerCuts = ConstraintList()

add the integer cut corresponding to the current
solution in the model
cut_expr = 0.0
for r in model.ROWS:

for c in model.COLS:
for v in model.VALUES:

if not model.y[r,c,v].fixed:
check if the binary variable is on or off
note, it may not be exactly 1
if value(model.y[r,c,v]) >= 0.5:

cut_expr += (1.0 - model.y[r,c,v])
else:

cut_expr += model.y[r,c,v]
model.IntegerCuts.add(cut_expr >= 1)

252 14 Scripting

prints the current solution stored in the model
def print_solution(model):

for r in model.ROWS:
print(’ ’.join(str(v) for c in model.COLS

for v in model.VALUES
if value(model.y[r,c,v]) >= 0.5))

The following code shows a script that drives the optimization process based on
these three functions. This script defines the candidate board, and iteratively solves
the Sudoku problems by adding integer cuts until the problem is no longer feasible.
Infeasibility is assumed when the solver termination condition is no longer reported
as optimal.

from pyomo.opt import (SolverFactory,
TerminationCondition)

from sudoku import (create_sudoku_model,
print_solution,
add_integer_cut)

define the board
board = [(1,1,5),(1,2,3),(1,5,7), \

(2,1,6),(2,4,1),(2,5,9),(2,6,5), \
(3,2,9),(3,3,8),(3,8,6), \
(4,1,8),(4,5,6),(4,9,3), \
(5,1,4),(5,4,8),(5,6,3),(5,9,1), \
(6,1,7),(6,5,2),(6,9,6), \
(7,2,6),(7,7,2),(7,8,8), \
(8,4,4),(8,5,1),(8,6,9),(8,9,5), \
(9,5,8),(9,8,7),(9,9,9)]

model = create_sudoku_model(board)

solution_count = 0
while 1:

with SolverFactory("glpk") as opt:
results = opt.solve(model)
if results.solver.termination_condition != \

TerminationCondition.optimal:
print("All board solutions have been found")
break

solution_count += 1

add_integer_cut(model)

print("Solution #%d" % (solution_count))
print_solution(model)

Running this script provides all possible solutions as the output. In this example,
there is only one solution to the candidate Sudoku puzzle, as shown in Figure 14.3.

14.6 Scripting Examples 253

Fig. 14.3: Solved Sudoku puzzle.

Appendix A

A Brief Python Tutorial

Abstract This chapter provides a short tutorial of the Python programming lan-
guage. This chapter briefly covers basic concepts of Python, including variables,
expressions, control flow, functions, and classes. The goal is to provide a reference
for the Python constructs that are used in the book. A full introduction to Python is
provided by resources such as those listed at the end of the chapter.

A.1 Overview

Python is a powerful programming language that is easy to learn. Python is an in-
terpreted language, so developing and testing Python software does not require the
compilation and linking that is required by traditional software languages like FOR-
TRAN and C. Furthermore, Python includes a command-line interpreter that can be
used interactively. This allows the user to work directly with Python data structures,
which is invaluable for learning about data structure capabilities and for diagnosing
software failures.

Python has an elegant syntax that enables programs to be written in a compact,
readable style. Programs written in Python are typically much shorter than equiva-
lent software developed with languages like C, C++, or Java because:

• Python supports many high-level data types that simplify complex operations.
• Python uses indentation to group statements, which enforces a clean coding

style.
• Python uses dynamically typed data, so variable and argument declarations are

not necessary.

Python is a highly structured programming language that provides support for
large software applications. Consequently, Python is a much more powerful lan-
guage than many scripting tools (e.g., shell languages and Windows batch files).
Python also includes modern programming language features like object-oriented

255© Springer International Publishing AG 2017
W.E. Hart et al., Pyomo — Optimization Modeling in Python, Springer Optimization
and Its Applications 67, DOI 10.1007/978-3-319-58821-6

256 A A Brief Python Tutorial

programming, as well as rich set of built-in standard libraries that can be used to
quickly build sophisticated software applications.

The goal in this Appendix is to provide a reference for Python constructs used in
the rest of the book. A full introduction to Python is provided by resources such as
those listed at the end of the chapter.

A.2 Installing and Running Python

Python codes are executed using an interpreter. When this interpreter starts, a com-
mand prompt is printed and the interpreter waits for the user to enter Python com-
mands. For example, a standard way to get started with Python is to execute the
interpreter from a shell environment and then print “Hello World”:

% python
Python 3.5.2 (default, Aug 3 2016, 09:52:55)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-17)] on linux
Type "help", "copyright", "credits" or "license" for more \

information.
>>> print ("Hello World")
Hello World
>>>

On Windows the python command can be launched from the DOS shell, and on
*nux (which includes Macs) the python command can be launched from a bash
or csh shell (or terminal). The Python interactive shell is similar to these shell envi-
ronments; when a user enters a valid Python statement, it is immediately evaluated
and its corresponding output is immediately printed.

The interactive shell is useful for interrogating the state of complex data types. In
most cases, this will involve single-line statements, like the “print” function shown
above. Multi-line statements can also be entered into the interactive shell. Python
uses the “...” prompt to indicate that a continuation line is needed to define a valid
multi-line statement. For example, a conditional statement requires a block of state-
ments that are defined on continuation lines:

>>> x = True
>>> if x:
... print("x is True")
... else:
... print("x is False")
...
x is True

NOTE: Proper indentation is required for multi-line statements executed in the
interactive shell.

A.3 Python Line Format 257

NOTE: True is a predefined Python literal so x = True assigns this value
to x in the same way that the predefined literal 6 would be assigned by x = 6.

The Python interpreter can also be used to execute Python statements in a file,
which allows the automated execution of complex Python programs. Python source
files are text files, and the convention is to name source files with the .py suffix.
For example, consider the example.py file:

This is a comment line, which is ignored by Python

print("Hello World")

The code can be executed in several ways. Perhaps the most common is to exe-
cute the Python interpreter within a shell environment:

% python example.py
Hello World
%

On Windows, Python programs can be executed by double clicking on a .py file;
this launches a console window in which the Python interpreter is executed. The
console window terminates immediately after the interpreter executes, but this ex-
ample can be easily adapted to wait for user input before terminating:

A modified example.py program
print("Hello World")

import sys
sys.stdin.readline()

A.3 Python Line Format

Python does not make use of begin-end symbols for blocks of code. Instead, a colon
is used to indicate the end of a statement that defines the start of a block and then
indentation is used to demarcate the block. For example, consider a file containing
the following Python commands:

This comment is the first line of LineExample.py
all characters on a line after the #-character are
ignored by python

print("Hello World, have you lost weight?")

weight = 400

if weight > 300:
print("Oh, sorry, I guess not.")
print("My mistake.")

else:

258 A A Brief Python Tutorial

print("Keep up the good work!")

When passed to Python, this program will cause some text to be output.
Because indentation has meaning, Python requires consistency. The following

program will generate an error message because the indentation within the if-block
is inconsistent:

This comment is the first line of BadIndent.py
it will cause python to give an error message
concerning indentation

print("Hello World, have you lost weight?")

weight = 200

if weight > 300:
print("Oh, sorry, I guess not.")

print("My mistake.")
else:

print("Keep up the good work!")

Generally, each line of a Python script or program contains a single statement.
Long statements with long variable names can result in very long lines in a Python
script. Although this is syntactically correct, it is sometimes convenient to split a
statement across two or more lines. The backslash (\) tells Python that text that
is logically part of the current line will be continued on the next line. In a few
situations, a backslash is not needed for line continuation. For Pyomo users, the
most important case where the backslash is not needed is in the argument list of a
function. Arguments to a function are separated by commas, and after a comma the
arguments can be continued on the next line without using a backslash.

Conversely, it is sometimes possible to combine multiple Python statements on
one line. However, we recommend against it as a matter of style and to enhance
maintainability of code.

A.4 Variables and Data Types

Python variables do not need to be explicitly declared. A statement that assigns a
value to an undefined symbol implicitly declares the variable. Additionally, a vari-
able’s type is determined by the data that it contains. The statement

weight=200

creates a variable called weight, and it has the integer type because 200 is an
integer. Python is case sensitive, so the statement

Weight="Less than yesterday."

creates a variable that is not the same as weight. The assignment
weight = Weight

A.4 Variables and Data Types 259

would cause the variable weight to have the same value as Weight and therefore
the same type.

Python programmers need to be especially careful about types in code that does
arithmetic. For example, division involving only integers results in integer division
in Python versions before 3, which is often not intended. Consider the following
program:

weight = 200
Weight = 400

print("Division of %d by %d gives %f" % (weight, Weight, \
weight / Weight))

print("Casting the operands to float gives %f" % \
(float(weight) / float(Weight)))

print("Casting the result to float gives %f" % \
(float(weight / Weight)))

Pyomo language users need to be careful about this issue if they write scripts that
do arithmetic. Generally they cannot be sure what types the variables will have
because the type depends on the data contained by the variable. A simple approach
is to cast variables explicitly to float when floating point arithmetic is desired, as
this example illustrates.

Note that this does not apply to objective and constraint expressions that are part
of a Pyomo model that are evaluated by solvers. Our concern here is with expres-
sions that are part of a Python script. The distinction may be subtle because script
expressions may make use of Pyomo components and may be part of the code used
to construct Pyomo components. Consider the following model:

model = AbstractModel()

model.pParm = Param(within=Integers, default = 2)
model.wParm = Param(within=PositiveIntegers, default = 4)
model.aVar = Var(within=NonNegativeReals)

def MyConstraintRule(model):
if float(value(model.pParm)) / \

float(value(model.wParm)) > 0.6:
return model.aVar / model.wParm <= 0.9

else:
return model.aVar / model.wParm <= 0.8

model.MyConstraint = Constraint(rule=MyConstraintRule)

def MyObjectiveRule(model):
return model.wParm * model.aVar

model.MyObjective = Objective(rule=MyObjectiveRule,
sense=maximize)

The line that begins with if is interpreted by Python to control which expression
will be used to construct a constraint that will be passed to a solver. Thus, it is impor-
tant to use the float() function because a float result is desired in the conditional.

260 A A Brief Python Tutorial

A.5 Data Structures

This section summarizes Python data structures that can be helpful in scripting Py-
omo applications. Many Python and Pyomo data structures can be accessed by in-
dexing their elements. Pyomo typically starts indices and ranges with a one, while
Python is zero based.

A.5.1 Strings

String literals can be enclosed in either single or double quotes, which enables the
other to be easily included in a string. Python supports a wide range of string func-
tions and operations. For example, the addition operator (+) concatenates strings. To
cast another type to string, use the str function. The Python line:

NameAge = "SPAM was introduced in " + str(1937)

assigns a string to the Python variable called NameAge.

A.5.2 Lists

Python lists correspond roughly to arrays in many other programming languages.
Lists can be accessed element by element, as an entire list, or as a partial list. The
slicing character is a colon (:) and negative indices indicate indexing from the end.
The following Python session illustrates these operations:

>>> a = [3.14, 2.72, 100, 1234]
>>> a
[3.14, 2.72, 100, 1234]
>>> a[0]
3.14
>>> a[-2]
100
>>> a[1:-1]
[2.72, 100]
>>> a[:2] + [’bacon’, 2*2]
[3.14, 2.72, ’bacon’, 4]

The addition operator concatenates lists, and multiplication by an integer replicates
lists.

NOTE: In Python, lists can have mixed types such as the mixture of floats and
integers just given.

There are many list functions. Perhaps the most common is the append func-
tion, which adds elements to the end of a list:

A.5 Data Structures 261

>>> a = []
>>> a.append(16)
>>> a.append(22.4)
>>> a
[16, 22.4]

A.5.3 Tuples

Tuples are similar to lists, but are intended to describe multi-dimensional objects.
For example, it would be reasonable to have a list of tuples. Tuples differ from lists in
that they use parentheses rather than square brackets for initialization. Additionally,
the members of a list can be changed by assignment while tuples cannot be changed
(i.e., tuples are immutable while lists are mutable). Although parentheses are used
for initialization, square brackets are used to reference individual elements in a tuple
(which is the same as for lists; this allows members of a list of tuples to be accessed
with code that looks like access to an array).

Suppose we have a tuple intended to represent the location of a point in a three-
dimensional space. The origin would be given by the tuple (0,0,0). Consider the
following Python session:

>>> orig = (0,0,0)
>>> pt = (-1.1, 9, 6)
>>> pt[1]
9
>>> pt = orig
>>> pt
(0, 0, 0)

For example, the statement
pt[1] = 4

would generate an error because tuple elements cannot be overwritten. Of course
the entire tuple can be overwritten, since that assignment only impacts the variable
containing the tuple.

A.5.4 Sets

Python sets are extremely similar to Pyomo Set components. Pyomo Set compo-
nents implement the mathematical notion of a set, so they cannot have duplicate
members and are, by default, unordered. Python sets are declared using the set
function, which takes a list (perhaps an empty list) as an argument. Once a set has
been created, it has member functions for operations such as add (one new mem-

262 A A Brief Python Tutorial

ber), update (with multiple new members), and discard (existing members).
The following Python session illustrates the functionality of set objects:

>>> A = set([1, 3])
>>> B = set([2, 4, 6])
>>> A.add(7)
>>> C = A | B
>>> print(C)
set([1, 2, 3, 4, 6, 7])

NOTE: Lowercase set refers to the built-in Python object. Uppercase Set
refers to the Pyomo component.

A.5.5 Dictionaries

Python dictionaries are somewhat similar to lists; however, they are unordered and
they can be indexed by any immutable type (e.g., strings, numbers, tuples com-
posed of strings and/or numbers, and more complex objects). The indices are called
keys, and within any particular dictionary the keys must be unique. Dictionaries
are created using brackets, and they can be initialized with a list of key-value pairs
separated by commas. Dictionary members can be added by assignment of a value
to the dictionary key. The values in the dictionary can be any object (even other
dictionaries), but we will restrict our attention to simpler dictionaries. Here is an
example:

>>> D = {’Bob’:’123-1134’,}
>>> D[’Alice’] = ’331-9987’
>>> print(D)
{’Bob’: ’123-1134’, ’Alice’: ’331-9987’}
>>> print(D.keys())
[’Bob’, ’Alice’]
>>> print(D[’Bob’])
123-1134

A.6 Conditionals

Python supports conditional code execution using structures like:
if CONDITIONAL1:

statements
elif CONDITIONAL2:

statements
else:

statements

A.7 Iterations and Looping 263

The elif and else statements are optional and any number of elif statements
can be used. Each conditional code block can contain an arbitrary number of state-
ments. The conditionals can be replaced by a logical expression, a call to a boolean
function, or a boolean variable (and it could even be called CONDITIONAL1). The
boolean literals True and False are sometimes used in these expressions. The
following program illustrates some of these ideas:

x = 6
y = False

if x == 5:
print("x happens to be 5")
print("for what that is worth")

elif y:
print("x is not 5, but at least y is True")

else:
print("This program cannot tell us much.")

@:all

A.7 Iterations and Looping

As is typical for modern programming languages, Python offers for and while
looping as modified by continue and break statements. When an else state-
ment is given for a for or while loop, the code block controlled by the else
statement is executed when the loop terminates. The continue statement causes
the current block of code to terminate and transfers control to the loop statement.
The break command causes an exit from the entire looping construct.

The following example illustrates these constructs:
D = {’Mary’:231}
D[’Bob’] = 123
D[’Alice’] = 331
D[’Ted’] = 987

for i in sorted(D):
if i == ’Alice’:

continue
if i == ’John’:

print("Loop ends. Cleese alert!")
break;

print(i+" "+str(D[i]))
else:

print("Cleese is not in the list.")

In this example, the for-loop iterates over all keys in the dictionary. The in keyword
is particularly useful in Python to facilitate looping over iterable types such as lists
and dictionaries. Note that the order of keys is arbitrary; the sorted() function
can be used to sort them.

264 A A Brief Python Tutorial

This program will print the list of keys and dictionary entries, except for the key
“Alice,” and then it prints “Cleese is not in the list.” If the name “John” was one of
the keys, the loop would terminate whenever it was encountered and in that case,
the else clause would skipped because break causes control to exit the entire
looping structure, including its else.

A.8 Functions

Python functions can take objects as arguments and return objects. Because Python
offers built-in types like tuples, lists, and dictionaries, it is easy for a function to
return multiple values in an orderly way. Writers of a function can provide default
values for unspecified arguments, so it is common to have Python functions that
can be called with a variable number of arguments. In Python, a function is also an
object; consequently, functions can be passed as arguments to other functions.

Function arguments are passed by reference, but many types in Python are im-
mutable so it can be a little confusing for new programmers to determine which
types of arguments can be changed by a function. It is somewhat uncommon for
Python developers to write functions that make changes to the values of any of their
arguments. However, if a function is a member of a class, it is very common for the
function to change data within the object that called it.

User-defined functions are declared with a def statement. The return state-
ment causes the function to end and the specified values to be returned. There is no
requirement that a function return anything; the end of the function’s indent block
can also signal the end of a function. Some of these concepts are illustrated by the
following example:

def Apply(f, a):
r = []
for i in range(len(a)):

r.append(f(a[i]))
return r

def SqifOdd(x):
if x is odd, 2*trunc(x/2) is not x
due to integer divide of x/2
if 2*int(x/2) == x:

return x
else:

return x*x

ShortList = range(4)
B = Apply(SqifOdd, ShortList)
print(B)

This program prints [0, 1, 2, 9]. The Apply function assumes that it has
been passed a function and a list; it builds up a new list by applying the function to
the list and then returns the new list. The SqifOdd function returns its argument

A.9 Objects and Classes 265

(x) unless 2*int(x/2) is not x. If x is an odd integer, then int(x/2) will
truncate x/2 so two times the result will not be equal to x.

A somewhat advanced programming topic is the writing and use of function
wrappers. There are multiple ways to write and use wrappers in Python, but we
will now briefly introduce decorators because they are sometimes used in Pyomo
models and scripts. Although the definition of a decorator can be complicated, the
use of one is simple: an at-sign followed by the name of the decorator is placed on
the line above the declaration of the function to be decorated.

Below is an example of the definition and use of a silly decorator to change ’c’
to ’b’ in the return values of a function.

An example of a silly decorator to change ’c’ to ’b’
in the return value of a function.

def ctob_decorate(func):
def func_wrapper(*args, **kwargs):

retval = func(*args, **kwargs).replace(’c’,’b’)
return retval.replace(’C’,’B’)

return func_wrapper

@ctob_decorate
def Last_Words():

return "Flying Circus"

print (Last_Words())

In the definition of the decorator, whose name is ctob decorate, the function
wrapper, whose name is func wrapper uses a fairly standard Python mechanism
for allowing arbitrary arguments. The function passed in to the formal argument
called func is assumed by the wrapper to return a string (this is not checked by the
wrapper). Once defined, the wrapper can then be used to decorate any number of
functions. In this example, the function Last Words is decorated, which has the
effect of modifying its return value.

A.9 Objects and Classes

Classes define objects. Put another way: objects instantiate classes. Objects can have
members that are data or functions. In this context, functions are often called meth-
ods. As an aside, we note that in Python both data and functions are technically
objects, so it would be correct to simply say that objects can have member objects.

User-defined classes are declared using the class command and everything in
the indent block of a class command is part of the class definition. An overly simple
example of a class is a storage container that prints its value:

class IntLocker:
sint = None
def __init__(self, i):

self.set_value(i)

266 A A Brief Python Tutorial

def set_value(self, i):
if type(i) is not int:

print("Error: %d is not integer." % i)
else:

self.sint = i
def pprint(self):

print("The Int Locker has "+str(self.sint))

a = IntLocker(3)
a.pprint()
a.set_value(5)
a.pprint()

The class IntLocker has a member data element called sint and two member
functions. When a member function is called, Python automatically supplies the
object as the first argument. Thus, it makes sense to list the first argument of a
member function as self, because this is the way that a class can refer to itself.
The init method is a special member function that is automatically called
when an object is created; this function is not required.

A.10 Modules

A module is a file that contains Python statements. For example, any file containing a
Python “program” that defines classes or functions is a module. Definitions from one
module can be made available in another module (or program file) via the import
command, which can specify which names to import or specify the import of all
names by using an asterisk.

Python is typically installed with many standard modules present, such as types.
The command from types import * causes the import of all names from the
types module.

Multiple module files in a directory can be organized into a package, and pack-
ages can contain modules and subpackages. Imports from a package can use a state-
ment that gives the package name (i.e., directory name) followed by a dot followed
by a the module name. For example, the command

from pyomo.environ import *

imports the names from the pyomo package module called environ. Analogous
to the init method in a python class, an init .py file can be included in
a directory and any code therein is executed when that module is imported.

A.11 Python Resources

• Python Home Page, http://www.python.org.
• Python Essential Reference, David M. Beazley, Addison-Wesley, 2009.

http://www.python.org

Bibliography

[1] AIMMS. Home page. http://www.aimms.com, 2017.
[2] AMPL. Home page. http://www.ampl.com, 2017.
[3] Prasanth Anbalagan and Mladen Vouk. On reliability analysis of open source

software - FEDORA. In 19th International Symposium on Software Reliability
Engineering, 2008.

[4] APLEpy. APLEpy: An open source algebraic programming language exten-
sion for Python. http://aplepy.sourceforge.net, 2005.

[5] S. Bailey, D. Ho, D. Hobson, and SN Busenberg. Population dynamics of deer.
Mathematical Modelling, 6(6):487–497, 1985.

[6] E. Balas. Disjunctive programming and a hierarchy of relaxations for discrete
optimization problems. SIAM J Alg Disc Math, 6(3):466–486, 1985.

[7] John F. Bard. Practical bilevel optimization: Algorithms and applications.
Kluwer Academic Publishers, Dordrecht, 1998.

[8] Colson Benoı̂it, Patrice Marcotte, and Gilles Savard. An overview of bilevel
optimization. Ann Oper Res, 153:235–256, 2007.

[9] B.W. Bequette. Process control: modeling, design, and simulation. Prentice
Hall, 2003.

[10] J.R. Birge and F. Louveaux. Introduction to Stochastic Programming.
Springer, 1997.

[11] J.R. Birge, M.A. Dempster, H.I. Gassmann, E.A. Gunn, A.J. King, and S.W.
Wallace. A standard input format for multiperiod stochastic linear program.
COAL (Math. Prog. Soc., Comm. on Algorithms) Newsletter, 17:1–19, 1987.

[12] BSD. Open Source Initiative (OSI) - the BSD license. http://www.
opensource.org/licenses/bsd-license.php, 2009.

[13] C.C. Caroe and R. Schultz. Dual decomposition in stochastic integer program-
ming. Operations Research Letters, 24(1–2):37–45, 1999.

[14] COIN-OR. Home page. http://www.coin-or.org, 2017.
[15] COUENNE. Home page. http://www.coin-or.org/Couenne, 2017.
[16] CPLEX. http://www.cplex.com, July 2010.

267© Springer International Publishing AG 2017
W.E. Hart et al., Pyomo — Optimization Modeling in Python, Springer Optimization
and Its Applications 67, DOI 10.1007/978-3-319-58821-6

http://www.aimms.com
http://www.ampl.com
http://aplepy.sourceforge.net
http://www.opensource.org/licenses/bsd-license.php
http://www.coin-or.org
http://www.coin-or.org/Couenne
http://www.cplex.com
http://www.opensource.org/licenses/bsd-license.php

268

[17] Teodor Gabriel Crainic, Mike Hewitt, and Walter Rei. Scenario grouping in a
progressive hedging-based meta-heuristic for stochastic network design. Com-
put. Oper. Res., 43:90–99, March 2014.

[18] T.G. Cranic, X. Fu, M. Gendreau, W. Rei, and S.W. Wallace. Progressive
hedging-based meta-heuristics for stochastic network design. Technical Re-
port CIRRELT-2009-03, University of Montreal CIRRELT, January 2009.

[19] G.B. Dantzig. Linear programming under uncertainty. Management Science,
1:197–206, 1955.

[20] Steven P. Dirkse and Michael C. Ferris. MCPLIB: A collection of nonlinear
mixed-complementarity problems. Optimization Methods and Software, 5(4):
319–345, 1995.

[21] Y. Fan and C. Liu. Solving stochastic transportation network protection prob-
lems using the progressive hedging-based method. Networks and Spatial Eco-
nomics, 10(2):193–208, 2010.

[22] Michael C. Ferris and Todd S. Munson. Complementarity problems in GAMS
and the path solver. Journal of Economic Dynamics and Control, 24(2):165–
188, 2000.

[23] Michael C. Ferris and J. S. Pang. Engineering and economic applications of
complementarity problems. SIAM Review, 39(4):669–713, 1997.

[24] Michael C. Ferris, Robert Fourer, and David M. Gay. Expressing complemen-
tarity problems in an algebraic modeling language and communicating them
to solvers. SIAM J. Optimization, 9(4):991–1009, 1999.

[25] Michael C. Ferris, Steven P. Dirkse, and A. Meeraus. Mathematical programs
with equilibrium constraints: Automatic reformulation and solution via con-
strained optimization. In T. J. Kehoe, T. N. Srinivasan, and J. Whalley, editors,
Frontiers in Applied General Equilibrium Modeling, pages 67–93. Cambridge
University Press, 2005.

[26] Michael C. Ferris, Steven P. Dirkse, Jan-H. Jagla, and Alexander Meeraus. An
extended mathematical programming framework. Computers and Chemical
Engineering, 33(12):19731982, 2009.

[27] FLOPC++. Home page. https://projects.coin-or.org/FlopC+
+, 2017.

[28] José Fortuny-Amat and Bruce McCarl. A representation and economic inter-
pretation of a two-level programming problem. The Journal of the Operations
Research Society, 32(9):783–792, 1981.

[29] R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: A Modeling Language
for Mathematical Programming, 2nd Ed. Brooks/Cole–Thomson Learning,
Pacific Grove, CA, 2003.

[30] D. Gade, G. Hackebeil, S.M. Ryan, J.-P. Watson, J-B Wets, and D.L. Woodruff.
Obtaining lower bounds from the progressive hedging algorithm for stochastic
mixed-integer programs. Mathematical Programming, Series B, to appear,
2016.

[31] GAMS. Home page. http://www.gams.com, 2008.
[32] H.I. Gassmann and E. Schweitzer. A comprehensive input format for stochas-

tic linear programs. Annals of Operations Research, 104:89–125, 2001.

Bibliography

https://projects.coin-or.org/FlopC++
http://www.gams.com
https://projects.coin-or.org/FlopC++

269

[33] D.M. Gay. Hooking your solver to ampl. Numerical Analysis Manuscript,
pages 93–10, 1993.

[34] D.M. Gay. Writing. nl files, 2005.
[35] GLPK. GLPK: GNU linear programming toolkit. http://www.gnu.org/

software/glpk, 2009.
[36] Harvey J. Greenberg. A bibliography for the development of an intelligent

mathematical programming system. ITORMS, 1(1), 1996.
[37] Jonathan L. Gross and Jay Yellen. Graph Theory and Its Applications, 2nd

Edition. Chapman & Hall/CRC, 2006.
[38] Ge Guo, Gabriel Hackebeil, Sarah M Ryan, Jean-Paul Watson, and David L

Woodruff. Integration of progressive hedging and dual decomposition in
stochastic integer programs. Operations Research Letters, 43:311–316, 2015.

[39] GUROBI. Gurobi optimization. http://www.gurobi.com, July 2010.
[40] P. T. Harker and J. S. Pang. Finite-dimensional variational inequality and non-

linear complementarity problems: A survey of theory, algorithms and applica-
tions. Mathematical Programming, 48:161–220, 1990.

[41] William E. Hart and John D. Siirola. Modeling mathematical programs with
equilibrium constraints in Pyomo. Technical Report SAND2015-5584, Sandia
National Laboratories, July 2015.

[42] William E. Hart, Jean-Paul Watson, and David L. Woodruff. Pyomo: Modeling
and solving mathematical programs in Python. Mathematical Programming
Computation, 3:219–260, 2011.

[43] Kjetil K. Haugen, Arne Lkketangen, and David L. Woodruff. Progressive
hedging as a meta-heuristic applied to stochastic lot-sizing. European Journal
of Operational Research, 132(1):116 – 122, 2001.

[44] T. Helgason and S.W. Wallace. Approximate scenario solutions in the progres-
sive hedging algorithm: A numerical study. Annals of Operations Research,
31(1–4):425–444, 1991.

[45] A. Holder, editor. Mathematical Programming Glossary. INFORMS Comput-
ing Society, http://glossary.computing.society.informs.
org, 2006–11. Originally authored by Harvey J. Greenberg, 1999-2006.

[46] Jing Hu, John E. Mitchell, Jong-Shi Pang, Kristin P. Bennett, and Gautam Ku-
napuli. On the global solution of linear programs with linear complementarity
constraints. SIAM J. Optimization, 19(1):445–471, 2008.

[47] L.M. Hvattum and A. Løkketangen. Using scenario trees and progressive
hedging for stochastic inventory routing problems. Journal of Heuristics, 15
(6):527–557, 2009.

[48] Ipopt. Home page. https://projects.coin-or.org/Ipopt, 2017.
[49] D. Jacobson and M. Lele. A transformation technique for optimal control

problems with a state variable inequality constraint. Automatic Control, IEEE
Transactions on, 14(5):457–464, Oct 1969.

[50] S. Jorjani, C.H. Scott, and D.L. Woodruff. Selection of an optimal subset of
sizes. International Journal of Production Research, 37(16):3697–3710, 1999.

[51] Joaquim J. Júdice. Algorithms for linear programming with linear comple-
mentarity constraints. TOP, 20(1):4–25, 2011.

Bibliography

http://www.gnu.org/software/glpk
http://www.gurobi.com
http://glossary.computing.society.informs.org
https://projects.coin-or.org/Ipopt
http://www.gnu.org/software/glpk
http://glossary.computing.society.informs.org

270

[52] Peter Kall and Janos Mayer. Stochastic Linear Programming: Models, Theory,
and Computation. Springer, 2005.

[53] Josef Kallrath. Modeling Languages in Mathematical Optimization. Kluwer
Academic Publishers, 2004.

[54] A.J. King and S.W. Wallace. Modelling with Stochastic Programming.
Springer, 2010.

[55] S. Lee and I. E. Grossmann. New algorithms for nonlinear generalized dis-
junctive programming. Comp.Chem.Engng, 24(9-10):2125–2141, 2000.

[56] Sven Leyffer. Complementarity constraints as nonlinear equations: Theory and
numerical experience. In S. Dempe and V. Kalishnikov, editors, Optimization
with Multivalued Mappings, pages 169–208. Springer, 2006.

[57] O. Listes and R. Dekker. A scenario aggregation based approach for determin-
ing a robust airline fleet composition. Transportation Science, 39:367–382,
2005.

[58] Johan Löfberg. YALMIP: A toolbox for modeling and optimization in MAT-
LAB. In 2004 IEEE Intl Symp on Computer Aided Control Systems Design,
2004.

[59] A. Løkketangen and D. L. Woodruff. Progressive hedging and tabu search
applied to mixed integer (0,1) multistage stochastic programming. Journal of
Heuristics, 2:111–128, 1996.

[60] Z.-Q. Lou, J.-S. Pang, and D. Ralph. Mathematical Programming with Equi-
librium Constraints. Cambridge University Press, Cambridge, UK, 1996.

[61] MacMPEC. MacMPEC: AMPL collection of MPECs. https://wiki.
mcs.anl.gov/leyffer/index.php/MacMPEC, 2000.

[62] MATLAB. User’s Guide. The MathWorks, Inc., 1992.
[63] Todd S. Munson. Algorithms and Environments for Complementarity. PhD

thesis, University of Wisconsin, Madison, 2000.
[64] Bethany Nicholson, John D. Siirola, Jean-Paul Watson, Victor M. Zavala,

and Lorenz T. Biegler. Mathematical Programming Computation, 2016.
Manuscript submitted for publication.

[65] J. Nocedal and SJ Wright. Numerical optimization, series in operations re-
search and financial engineering, 2006.

[66] OpenOpt. Home page. https://pypi.python.org/pypi/openopt,
2017.

[67] OptimJ. Wikipedia page. https://en.wikipedia.org/wiki/
OptimJ, 2017.

[68] J. Outrata, M. Kocvara, and J. Zowe. Nonsmooth Approach to Optimization
Problems with Equilibrium Constraints. Kluwer Academic Publishers, Dor-
drecht, 1998.

[69] PuLP. A python linear programming modeler. https://pythonhosted.
org/PuLP/, 2017.

[70] PyGlpk. PyGlpk: A python module which encapsulates GLPK. http://
www.tfinley.net/software/pyglpk, 2011.

[71] Pyipopt. Home page. https://github.com/xuy/pyipopt, 2017.

Bibliography

https://wiki.mcs.anl.gov/leyffer/index.php/MacMPEC
https://pypi.python.org/pypi/openopt
https://en.wikipedia.org/wiki/OptimJ
https://pythonhosted.org/PuLP/
http://www.tfinley.net/software/pyglpk
http://www.tfinley.net/software/pyglpk
https://github.com/xuy/pyipopt
https://wiki.mcs.anl.gov/leyffer/index.php/MacMPEC
https://en.wikipedia.org/wiki/OptimJ
https://pythonhosted.org/PuLP/

271

[72] pyomo-model-libraries. Models and examples for pyomo. https://
github.com/Pyomo/pyomo-model-libraries, 2015.

[73] Pyomo Software. Github site. https://github.com/Pyomo, 2017.
[74] PYRO4. Python remote objects. https://pythonhosted.org/

Pyro4/, 2017.
[75] R. Raman and I. E. Grossmann. Modelling and computational techniques for

logic based integer programming. Comp.Chem.Engng, 18(7):563–578, 1994.
[76] R.T. Rockafellar and R.J.-B. Wets. Scenarios and policy aggregation in opti-

mization under uncertainty. Mathematics of Operations Research, 16(1):119–
147, 1991.

[77] N.W. Sawaya and I. E. Grossmann. Computational implementation of non-
linear convex hull reformulation. Comp.Chem.Engng, 31(7):856–866, 2007.

[78] Hermann Schichl. Models and the history of modeling. In Josef Kallrath, ed-
itor, Modeling Languages in Mathematical Optimization, Dordrecht, Nether-
lands, 2004. Kluwer Academic Publishers.

[79] R. Schultz and S. Tiedemann. Conditional value-at-risk in stochastic programs
with mixed-integer recourse. Mathematical Programming, 105(2–3):365–386,
February 2005.

[80] Alexander Shapiro, Darinka Dentcheva, and Andrzej Ruszczynski. Lectures
on Stochastic Programming: Modeling and Theory. Society for Industrial and
Applied Mathematics, 2009.

[81] R.M. Van Slyke and R.J. Wets. L-shaped linear programs with applications
to optimal control and stochastic programming. SIAM Journal on Applied
Mathematics, 17:638–663, 1969.

[82] J. Thénié, Ch. van Delft, and J.-Ph. Vial. Automatic formulation of stochastic
programs via an algebraic modeling language. Computational Management
Science, 4(1):17–40, January 2007.

[83] TOMLAB. TOMLAB optimization environment. http://www.tomopt.
com/tomlab, 2008.

[84] Stein W. Wallace and William T. Ziemba, editors. Applications of Stochastic
Programming. Society for Industrial and Applied Mathematics, 2005.

[85] J.P. Watson and D.L. Woodruff. Progressive hedging innovations for a class of
stochastic mixed-integer resource allocation problems. Computational Man-
agement Science, 8:355–370, 2010.

[86] H. Paul Williams. Model Building in Mathematical Programming. John Wiley
& Sons, Ltd., fifth edition, 2013.

[87] D.L. Woodruff and E. Zemel. Hashing vectors for tabu search. Annals of
Operations Research, 41(2):123–137, 1993.

[88] Guangquan Zhang, Jie Lu, Javier Montero, and Yi Zeng. Model, solution
concept and Kth-best algorithm for linear trilevel programming. Information
Sciences, 180:481–492, 2010.

[89] Ying Zhou and Joseph Davis. Open source software reliability model: An em-
pirical approach. ACM SIGSOFT Software Engineering Notes, 30:1–6, 2005.

Bibliography

https://github.com/Pyomo/pyomo-model-libraries
https://github.com/Pyomo/pyomo-model-libraries
https://github.com/Pyomo
https://pythonhosted.org/Pyro4/
http://www.tomopt.com/tomlab
https://pythonhosted.org/Pyro4/
http://www.tomopt.com/tomlab

Index

Symbols

*, multiplication operator 123
*,multiplication operator 60
**, exponentiation operator 123
**=, in-place exponentiation 123
*/, in-place division 123
*=, in-place multiplication 123
/, division operator 123

A

abstract model 22
AbstractModel component 4, 22, 35, 47
acos function 123
acosh function 123
activate component 240
algebraic modeling language 1, 2

AIMMS 2
AMPL 2, 36
APLEpy 11
FlopC++ 2
GAMS 2
OptimJ 2
PuLP 11
TOMLAB 2

AML see algebraic modeling language
AMPL

data commands 98
AMPL Solver Library viii, 126
Any virtual set 51, 66
AnyWithNone virtual set 51
asin function 123
asinh function 123
ASL see AMPL Solver Library
atan function 123
atanh function 123

automatic differentiation 126

B

bilevel programs 223
Binary virtual set 51
block 8
Boolean virtual set 51
BuildAction component 74
BuildCheck component 74

C

callback
pyomo solve command 89
pyomo create model function 90
pyomo create modeldata function

90
pyomo modify instance function

90
pyomo postprocess function 90
pyomo preprocess function 90
pyomo print instance function 90
pyomo print model function 90
pyomo print results function 90
pyomo save instance function 90
pyomo save results function 90

class instance 6
COIN-OR 127
Complementarity component 213
Complementarity.Skip 214
ComplementarityList component 215
complements function 214
component see modeling component

initialization 47
concrete model 23
ConcreteModel component 3, 6, 35, 47

273© Springer International Publishing AG 2017
W.E. Hart et al., Pyomo — Optimization Modeling in Python, Springer Optimization
and Its Applications 67, DOI 10.1007/978-3-319-58821-6

274 Index

constraint 19
Constraint component 29, 55

ConstraintList component 6
expression 35, 45, 55, 56
index 57
non-anticipative 180
nonlinear 126
rule 34

Constraint component 29
Constraint.Feasible rule value 58
Constraint.Infeasible rule value

58
Constraint.NoConstraint rule value

58
Constraint.Skip rule value 57, 58
ConstraintList 246
ConstraintList component 6
ContinuousSet component 202
cos function 123
cosh function 123
CPLEX solver 10, 11
.csv file 108
CVaR 180

D

data
parameter 29, 64, 101
set 29, 59, 98
table 105
validate 66
validation 61, 99

data command 97
data 98
end 98
include 98, 117

load 98, 108

namespace 86, 98, 117

param 97, 101

set 97, 98

table 97, 105

data command file 36, 88, 171
database 98, 109, 110, 114

password 114
username 114

deactivate component 240
deer harvesting problem 130
derivative 121, 126
DerivativeVar component 202
deterministic equivalent 176
diet problem 192
disease estimation problem 135
Disjunct component 160
Disjunction component 161

dual value 94

E

EmptySet virtual set 51
Excel spreadsheet 114
exp function 123
expression 69

nonlinear 124
extensive form 176

F

farmer example 168
filename extension
.csv ASCII 108
.tab ASCII 108
.xml ASCII 108
.lp CPLEX LP 81, 82
.nl AMPL NL 81, 93, 126
.sqlite SQLite 116
.xls Excel 114

fix 240
fixed variable

extensive form 194
progressive hedging 190, 191

G

GLPK solver 9, 43, 83, 93
graph coloring problem 5
Gurobi solver 11

I

Immutable 261
include data command see data

command, include
index

effective set 68
valid set 68

indexed component 32, 56
initial value

variable 52, 127
instance see model, instance
integer program 5
Integers virtual set 51
IPOPT solver 10

J

JSON 83

L

linear program 3, 93

Index 275

load data command see data command,
load

log function 123
log10 function 123
LP see linear program
.lp file 81, 82

M

mathematical programs with equilibrium
constraint (MPECs) 211

matplotlib package 10
meta-solvers
bilevel blp global 228
bilevel blp local 229
bilevel ld 232
mpec minlp 220
mpec nlp 220

mixed complementarity condition 212
model
AbstractModel component 4, 22, 35
ConcreteModel component 3, 6, 35,

47
instance 5, 22, 26
name 44
object 8, 47, 83, 84

modeling 15
modeling component 3, 29, 47

activate 240
deactivate 240

multilevel optimization 223
mutable 48, 239, 261

N

namespace data command see data
command, namespace

NegativeIntegers virtual set 51
NegativeReals virtual set 51
.nl file 81, 93, 126
non-anticipativity 176
nonlinear

expression 122
model 122
solvers 126

NonNegativeIntegers virtual set 51
NonNegativeReals virtual set 51
NonPositiveIntegers virtual set 51
NonPositiveReals virtual set 51

O

objective 53
declaration 54

expression 35, 45, 54
multiple 54
nonlinear 126
Objective component 6, 29
sense 18

Objective component 6, 29
objective function 18
open source 9
ordered set 62
outer bound 199

P

Param component 29, 64

param data command see data command,
param

parameter 16, 18
default 66
mutable 239
Param component 29, 64

sparse representation 68
validation 66
value 66

PATH solver 219, 221
PercentFraction virtual set 51
phpyro command 175
plotting example 246
PositiveIntegers virtual set 51
PositiveReals virtual set 51
problem

deer harvesting 130
diet 192
disease estimation 135
graph coloring 5
reactor design 138, 139
Rosenbrock 123

.py file 257
pyomo command 26, 79

pyomo convert command
argument, --option 82

pyomo solve command
argument, --debug 96
argument,

--generate-config-template
84

argument, --help 83
argument, --info 96
argument, --json 95
argument, --keepfiles 94
argument, --log 94
argument, --model-name 86
argument, --model-options 90
argument, --namespace, --ns 86
argument, --postprocess 94

276 Index

argument, --print-results 92
argument, --quiet 96
argument, --save-results 92, 95
argument, --show-results 94
argument, --solver-manager 93
argument, --solver-options 93
argument, --solver-suffixes 93
argument, --solver 93
argument, --stream-output 94
argument, --summary 94
argument, --tempdir 94
argument, --timelimit 93
argument, --verbose 96
argument, --warning 96
callback 89

pyomo.bilevel package 225
pyomo.dae package 202
pyomo.environ package 6
pyomo.gdp package 159
pyomo.mpec package 213
pyomo.pysp package 165
Pyro 197
PySP

concrete model 175
convergence criteria 183
iteration limit 182
linearize penalty 185
PH bounds 198
PH variable fixing 193
reference model 168
stage cost 170

python 255

class declaration 265
conditional 262
dictionary data 262
function declaration 264
function decorators 265
generator syntax 34
iteration 263
list comprehension 34
list data 260
module 266
set data 261
string data 260
sum function 6, 34
tuple data 261

PyYAML package 9, 95

R

RangeSet component 59, 62

reactor design problem 138, 139
Reals virtual set 51
reduced cost 94

relational database see database
relations 16
results object 244
Rosenbrock problem 123
rule 34
runef command 176
runph command 182

S

scalar 20
scenario

data 166, 174
tree 167, 171, 172

ScenarioStructure.dat 172
scripting 44, 235

adding components 240
changing parameters 239
scripting
ConstraintList 246

examples 246
fixing variables 240
model creation function 238
modifying models 237
plotting with matplotlib 246
removing components 240
results object 244
scripting
solve() method 242

solver options 243
scripting
SolverFactory 242

unfixing variables 240
variable values 245

set 59
bounds 62
definition 60
dimen 62
filter element 61
initialize 60
ordered 62
RangeSet component 59, 62

rule 60
Set component 29, 59
SetOf component 59
tuple element 62
unordered 59
validation 61
value 59
virtual 62

Set component 29, 59
set data command see data command, set
SetOf component 59
sin function 123

Index 277

singularity 128
sinh function 123
slack value 94
SMPS 165
solve

using pyomo command 43
solve() method 242
solver

CPLEX 10, 11
GLPK 9, 43, 83, 93
Gurobi 11
IPOPT 10
PATH 219, 221
results object 244
setting options 243
termination condition 252

solver factory 242
solver options 243
SolverFactory 242
spreadsheet 98, 108, 110

Excel 114
range 114

SQL query 109, 115–117
.sqlite file 116
sqrt function 123
stochastic program 165

linear 180, 183
SubModel component 225
Sudoku problem 247
suffix 94

dual 94
rc 94
slack 94

T

.tab file 108
table data command see data command,

table
tan function 123
tanh function 123
temporary file 81, 94
transformations
bilevel.linear dual 230
bilevel.linear mpec 227

dae.collocation 207
dae.finite difference 205
gdp.bigm 162
gdp.bilinear 230
gdp.chull 163
mpec.nl 219
mpec.simple disjunction 218
mpec.simple nonlinear 216, 217
mpec.standard form 217

U

unfix 240
UnitInterval virtual set 51
unordered set 59

V

Value at Risk 180
value() function 245
Var component 29
variable 16, 18, 50

auxiliary 172
bounds 52
declaration 50
derived 172
domain 50
index 50
initial value 52
setlb 53
setub 53
Var component 29

variables
getting values 245

virtual set 62

X

.xls file 114

.xml file 108

Y

YAML 83

	Preface
	Goals of the Book
	Who Should Read This Book
	Revisions for the Second Edition
	Comments and Questions

	Acknowledgments
	Contents
	Chapter 1 Introduction
	1.1 Modeling Languages for Optimization
	1.2 Modeling with Pyomo
	1.2.1 Simple Examples
	1.2.2 Graph Coloring Example
	1.2.3 Key Pyomo Features
	Python
	Customizable Capability
	Command-Line Tools and Scripting
	Concrete and Abstract Model Definitions
	Object-Oriented Design
	Expressive Modeling Capability
	Solver Integration
	Open Source

	1.3 Getting Started
	1.4 Book Summary
	1.5 Discussion

	Part I An Introduction to Pyomo
	Chapter 2 Mathematical Modeling and Optimization
	2.1 Mathematical Modeling
	2.1.1 Overview
	2.1.2 A Modeling Example

	2.2 Optimization
	2.3 Linear and Nonlinear Optimization Models
	2.3.1 Definition
	2.3.2 A Linear Approximation

	2.4 Modeling with Pyomo
	2.4.1 An Abstract Formulation
	2.4.2 A Concrete Formulation
	2.4.3 Linear Version

	2.5 Solving the Pyomo Model
	2.5.1 Solvers
	2.5.2 The pyomo Command
	2.5.3 Python Scripts

	Chapter 3 Pyomo Overview
	3.1 Introduction
	3.2 The Warehouse Location Problem
	3.3 Pyomo Models
	3.3.1 Components for Variables, Objectives and Constraints
	3.3.2 Indexed Components
	3.3.3 Construction Rules
	3.3.4 Abstract and Concrete Models
	3.3.5 A Concrete Model for the Warehouse Location Problem
	3.3.6 Modeling Components for Sets and Parameters
	3.3.7 An Abstract Model for the Warehouse Location Problem

	3.4 Solving the Pyomo Model
	3.4.1 Using the pyomo Command
	3.4.2 Scripting the Solution Process

	Chapter 4 Pyomo Models and Components: An Introduction
	4.1 An Object-Oriented AML
	4.2 Common Component Paradigms
	4.2.1 Indexed Components

	4.3 Variables
	4.3.1 Var Declarations
	4.3.2 Working with Var Objects

	4.4 Objectives
	4.4.1 Objective Declarations
	4.4.2 Working with Objective Objects

	4.5 Constraints
	4.5.1 Constraint Declarations
	4.5.2 Working with Constraint Objects

	4.6 Set Data
	4.6.1 Set Declarations
	4.6.2 Working with Set Objects

	4.7 Parameter Data
	4.7.1 Param Declarations
	4.7.2 Working with Param Objects

	4.8 Named Expressions
	4.8.1 Expression Declarations
	4.8.2 Working with Expression Objects

	4.9 Suffix Components
	4.9.1 Suffix Declarations
	4.9.2 Working with Suffixes

	4.10 Build Components
	4.11 Other Modeling Components

	Chapter 5 The Pyomo Command
	5.1 Overview
	5.2 The check Subcommand
	5.3 The convert Subcommand
	5.4 The help Subcommand
	5.5 The solve Subcommand
	5.5.1 Specifying the Model Object
	5.5.2 Selecting Data with Namespaces
	5.5.3 Customizing Pyomo’s Workflow
	5.5.4 Customizing Solver Behavior
	5.5.5 Analyze Solver Results
	5.5.6 Managing Diagnostic Output

	5.6 Discussion

	Chapter 6 Data Command Files
	6.1 Model Data
	6.2 The set Command
	6.2.1 Simple Sets
	6.2.2 Sets of Tuple Data
	6.2.3 Set Arrays

	6.3 The param Command
	6.3.1 One-dimensional Parameter Data
	6.3.2 Multi-Dimensional Parameter Data

	6.4 The table Command
	6.5 The load Command
	6.5.1 Simple Load Examples
	6.5.2 Load Syntax Options
	6.5.3 Interpreting Tabular Data
	6.5.4 Loading from Spreadsheets and Relational Databases

	6.6 The include Command
	6.7 Data Namespaces
	6.8 Discussion

	Part II Advanced Features and Extensions
	Chapter 7 Nonlinear Programming with Pyomo
	7.1 Introduction
	7.2 Building Nonlinear Programming Formulations
	7.2.1 Nonlinear Expressions
	7.2.2 The Rosenbrock Problem

	7.3 Solving Nonlinear Programming Formulations
	7.3.1 Nonlinear Solvers
	7.3.2 Additional Tips for Nonlinear Programming
	Variable Initialization
	Undefined Evaluations
	Model Singularities and Problem Scaling

	7.4 Nonlinear Programming Examples
	7.4.1 Variable Initialization for a Multimodal Function
	7.4.2 Optimal Quotas for Sustainable Harvesting of Deer
	7.4.3 Estimation of Infectious Disease Models
	7.4.4 Reactor Design

	Chapter 8 Structured Modeling with Blocks
	8.1 Introduction
	8.2 Block structures
	8.3 Blocks as Indexed Components
	8.4 Construction Rules within Blocks
	8.5 Extracting values from hierarchical models
	8.6 Blocks Example: Optimal Multi-Period Lot-Sizing
	8.6.1 A Formulation Without Blocks
	8.6.2 A Formulation With Blocks

	Chapter 9 Generalized Disjunctive Programming
	9.1 Introduction
	9.2 Modeling GDP in Pyomo
	9.3 Solving GDP models
	9.3.1 Big-M transformation
	9.3.2 Convex hull transformation

	9.4 A mixing problem with semi-continuous variables

	Chapter 10 Stochastic Programming Extensions
	10.1 Introduction
	10.2 Stochastic Programming: Definition and Notation
	10.3 Modeling in PySP
	10.3.1 The Deterministic Reference Model
	10.3.2 The Scenario Tree
	10.3.3 Scenario Parameter Specification
	10.3.3.1 Abstract Models
	10.3.3.2 Concrete Models

	10.4 Generating and Solving the Extensive Form
	10.5 Progressive Hedging: A Generic Decomposition Strategy
	10.5.1 The runph Script
	10.5.1.1 Variable-specific ρ
	10.5.1.2 Linearization of the Proximal Penalty Terms
	10.5.1.3 Solution Values
	10.5.1.4 Setting Variable Bounds

	10.6 Progressive Hedging Extensions: Advanced Configuration
	10.6.1 Bundling
	10.6.2 Watson and Woodruff Extensions
	10.6.2.1 Mipgap Control and Cycle Detection Parameters
	10.6.2.2 General Variable Fixing and Slamming Parameters
	10.6.2.3 Variable-specific Fixing and Slamming Parameters

	10.6.3 Solving a Constrained Extensive Form
	10.6.4 Alternative Convergence Criteria
	10.6.5 User-Defined Extensions

	10.7 Solving PH Scenario Sub-Problems in Parallel
	10.8 Bounds

	Chapter 11 Differential Algebraic Equations
	11.1 Introduction
	11.2 Pyomo DAE Modeling Components
	11.3 Solving Pyomo Models with DAEs
	11.3.1 Finite Difference Transformation
	11.3.2 Collocation Transformation

	11.4 Additional Features
	11.4.1 Applying Multiple Discretizations
	11.4.2 Restricting Control Input Profiles
	11.4.3 Plotting

	Chapter 12 Mathematical Programs with Equilibrium Constraints
	12.1 Introduction
	12.2 Modeling Equilibrium Conditions
	12.2.1 Complementarity Conditions
	12.2.2 Complementarity Expressions
	12.2.3 Modeling Mixed-Complementarity Conditions

	12.3 MPEC Transformations
	12.3.1 Standard Form
	12.3.2 Simple Nonlinear
	12.3.3 Simple Disjunction
	12.3.4 AMPL Solver Interface

	12.4 Solver Interfaces and Meta-Solvers
	12.4.1 Nonlinear Reformulations
	12.4.2 Disjunctive Reformulations
	12.4.3 PATH and the ASL Solver Interface

	12.5 Discussion

	Chapter 13 Bilevel Programming
	13.1 Introduction
	13.2 Motivating Problems
	13.2.1 Linear Bilevel Programs with Continuous Variables
	13.2.2 Quadratic Min/Max

	13.3 Modeling Bilevel Programs
	13.4 Solving Linear Bilevel Programs
	13.4.1 Global Optimization
	13.4.2 Local Optimization

	13.5 Solving Quadratic Min-Max Bilevel Programs
	13.6 Discussion

	Chapter 14 Scripting
	14.1 Introduction
	14.2 A Basic Optimization Script
	14.3 Creating and Modifying Pyomo Models
	14.3.1 Modifying Model Parameters
	14.3.2 Modifying Model Structure

	14.4 Using Solvers
	14.5 Investigating the Solution
	14.5.1 Solver Results
	14.5.2 Retrieving Variable Values

	14.6 Scripting Examples
	14.6.1 Warehouse Location Loop and Plotting
	14.6.2 A Sudoku Solver

	Appendix A A Brief Python Tutorial
	A.1 Overview
	A.2 Installing and Running Python
	A.3 Python Line Format
	A.4 Variables and Data Types
	A.5 Data Structures
	A.5.1 Strings
	A.5.2 Lists
	A.5.3 Tuples
	A.5.4 Sets
	A.5.5 Dictionaries

	A.6 Conditionals
	A.7 Iterations and Looping
	A.8 Functions
	A.9 Objects and Classes
	A.10 Modules
	A.11 Python Resources

	Bibliography
	Index

